We show that, for a sheet or a Lusztig stratum S containing spherical conjugacy classes in a connected reductive algebraic group G over an algebraically closed field in good characteristic, the orbit space S/G is isomorphic to the quotient of an affine subvariety of G modulo the action of a finite abelian 2-group. The affine subvariety is a closed subset of a Bruhat double coset and the abelian group is a finite subgroup of a maximal torus of G. We show that sheets of spherical conjugacy classes in a simple group are always smooth and we list which strata containing spherical classes are smooth.

A Katsylo theorem for sheets of spherical conjugacy classes

CARNOVALE, GIOVANNA
;
ESPOSITO, FRANCESCO
2015

Abstract

We show that, for a sheet or a Lusztig stratum S containing spherical conjugacy classes in a connected reductive algebraic group G over an algebraically closed field in good characteristic, the orbit space S/G is isomorphic to the quotient of an affine subvariety of G modulo the action of a finite abelian 2-group. The affine subvariety is a closed subset of a Bruhat double coset and the abelian group is a finite subgroup of a maximal torus of G. We show that sheets of spherical conjugacy classes in a simple group are always smooth and we list which strata containing spherical classes are smooth.
2015
File in questo prodotto:
File Dimensione Formato  
Katsylo-giovanna-francesco-ERT-revised-new-version.pdf

accesso aperto

Descrizione: Preprint dell'articolo
Tipologia: Postprint (accepted version)
Licenza: Creative commons
Dimensione 294.09 kB
Formato Adobe PDF
294.09 kB Adobe PDF Visualizza/Apri
AKatsyloTheorem.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 281.5 kB
Formato Adobe PDF
281.5 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3188405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact