We show that, for a sheet or a Lusztig stratum S containing spherical conjugacy classes in a connected reductive algebraic group G over an algebraically closed field in good characteristic, the orbit space S/G is isomorphic to the quotient of an affine subvariety of G modulo the action of a finite abelian 2-group. The affine subvariety is a closed subset of a Bruhat double coset and the abelian group is a finite subgroup of a maximal torus of G. We show that sheets of spherical conjugacy classes in a simple group are always smooth and we list which strata containing spherical classes are smooth.
A Katsylo theorem for sheets of spherical conjugacy classes
CARNOVALE, GIOVANNA
;ESPOSITO, FRANCESCO
2015
Abstract
We show that, for a sheet or a Lusztig stratum S containing spherical conjugacy classes in a connected reductive algebraic group G over an algebraically closed field in good characteristic, the orbit space S/G is isomorphic to the quotient of an affine subvariety of G modulo the action of a finite abelian 2-group. The affine subvariety is a closed subset of a Bruhat double coset and the abelian group is a finite subgroup of a maximal torus of G. We show that sheets of spherical conjugacy classes in a simple group are always smooth and we list which strata containing spherical classes are smooth.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Katsylo-giovanna-francesco-ERT-revised-new-version.pdf
accesso aperto
Descrizione: Preprint dell'articolo
Tipologia:
Postprint (accepted version)
Licenza:
Creative commons
Dimensione
294.09 kB
Formato
Adobe PDF
|
294.09 kB | Adobe PDF | Visualizza/Apri |
AKatsyloTheorem.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
281.5 kB
Formato
Adobe PDF
|
281.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.