This work aimed to test the long-lasting effects of learning acquired with a virtual motorcycle-riding trainer as a tool to improve hazard perception. During the simulation, the rider can interact with other road actors and experience the most common potential accident situations in order to learn to modify his or her behavior to anticipate hazards and avoid crashes. We compared performance to the riding simulator of the two groups of participants: the experimental group, which was trained with the same simulator one year prior, and the control group that had not received any type of training with a riding or driving simulator. All of the participants had ridden a moped in the previous 12 months. The experimental group showed greater abilities to avoid accidents and recognize hazards in comparison to their performance observed a year before, whereas the performance of the control group was similar to that of the experimental group 1 year before in the first two sessions, and even better in the third. We interpreted this latter result as a consequence of their prior on-road experience. Also, the fact that the performance of the experimental group at the beginning of the follow-up is better than that recorded at the end of the training 1 year before is in line with the idea of a transfer from the on-road experience to the simulator. The present data confirm our main expectation that the effectiveness of the riding training simulator on the ability to cope with potentially dangerous situations persists over time and provides additional evidence in favor of the idea that simulators may be considered useful tools for training the ability to detect and react to hazards, leading to an improvement of this higher-order cognitive skill that persists over time. Implications for the reciprocal influence of the training with the simulator and the on-the road experience are discussed as well.
Long-lasting virtual motorcycle-riding trainer effectiveness
VIDOTTO, GIULIO;TAGLIABUE, MARIAELENA;TIRA, MICHAEL DAVIS
2015
Abstract
This work aimed to test the long-lasting effects of learning acquired with a virtual motorcycle-riding trainer as a tool to improve hazard perception. During the simulation, the rider can interact with other road actors and experience the most common potential accident situations in order to learn to modify his or her behavior to anticipate hazards and avoid crashes. We compared performance to the riding simulator of the two groups of participants: the experimental group, which was trained with the same simulator one year prior, and the control group that had not received any type of training with a riding or driving simulator. All of the participants had ridden a moped in the previous 12 months. The experimental group showed greater abilities to avoid accidents and recognize hazards in comparison to their performance observed a year before, whereas the performance of the control group was similar to that of the experimental group 1 year before in the first two sessions, and even better in the third. We interpreted this latter result as a consequence of their prior on-road experience. Also, the fact that the performance of the experimental group at the beginning of the follow-up is better than that recorded at the end of the training 1 year before is in line with the idea of a transfer from the on-road experience to the simulator. The present data confirm our main expectation that the effectiveness of the riding training simulator on the ability to cope with potentially dangerous situations persists over time and provides additional evidence in favor of the idea that simulators may be considered useful tools for training the ability to detect and react to hazards, leading to an improvement of this higher-order cognitive skill that persists over time. Implications for the reciprocal influence of the training with the simulator and the on-the road experience are discussed as well.File | Dimensione | Formato | |
---|---|---|---|
VidottoTagliabueTira 2015.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
479.59 kB
Formato
Adobe PDF
|
479.59 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.