Quantum interference arising from the superposition of states is striking evidence of the validity of quantum mechanics, confirmed in many experiments and also exploited in applications. However, as for any scientific theory, quantum mechanics is valid within the limits in which it has been experimentally verified. In order to extend such limits, it is necessary to observe quantum interference in unexplored conditions such as moving terminals at large distances in space. Here, we experimentally demonstrate single photon interference at a ground station due to the coherent superposition of two temporal modes reflected by a rapidly moving satellite a thousand kilometers away. The relative speed of the satellite induces a varying modulation in the interference pattern. The measurement of the satellite distance in real time by laser ranging allows us to precisely predict the instantaneous value of the interference phase. We then observed the interference patterns with a visibility up to 67% with three different satellites and with a path length up to 5000 km. Our results attest to the viability of photon temporal modes for fundamental tests of physics and quantum communication in space.

Interference at the Single Photon Level Along Satellite-Ground Channels

VALLONE, GIUSEPPE;DEQUAL, DANIELE;TOMASIN, MARCO;VEDOVATO, FRANCESCO;SCHIAVON, MATTEO;VILLORESI, PAOLO
2016

Abstract

Quantum interference arising from the superposition of states is striking evidence of the validity of quantum mechanics, confirmed in many experiments and also exploited in applications. However, as for any scientific theory, quantum mechanics is valid within the limits in which it has been experimentally verified. In order to extend such limits, it is necessary to observe quantum interference in unexplored conditions such as moving terminals at large distances in space. Here, we experimentally demonstrate single photon interference at a ground station due to the coherent superposition of two temporal modes reflected by a rapidly moving satellite a thousand kilometers away. The relative speed of the satellite induces a varying modulation in the interference pattern. The measurement of the satellite distance in real time by laser ranging allows us to precisely predict the instantaneous value of the interference phase. We then observed the interference patterns with a visibility up to 67% with three different satellites and with a path length up to 5000 km. Our results attest to the viability of photon temporal modes for fundamental tests of physics and quantum communication in space.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.116.253601.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 646.54 kB
Formato Adobe PDF
646.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3192476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 62
social impact