The motion of a windshield wiper blade is modelled by a mass-spring-damper system on a moving frictional surface. The system dynamics is time-varying, since three different regimes of motion, characterized by different degrees of freedom, are possible. Indeed the system, which schematizes a blade cross-section, can experience stick and slip motions when it is in contact with the glass surface, and free flight motion when it is detached. The contact between the system and the surface is governed by Stribeck's friction law and Poisson's impact law, which make the dynamics non-smooth. The model is numerically implemented in an event-driven code, and simulations are performed which reproduce the three basic classes of undesired oscillations observed in the motion of real windscreen wipers, i.e., squeal, reversal and chattering noises. Attention is focused on the causes of these vibrations, and remedies for reducing or avoiding them are proposed.

Dynamics of windscreen wiper blades: Squeal noise, reversal noise and chattering

GALVANETTO, UGO
2016

Abstract

The motion of a windshield wiper blade is modelled by a mass-spring-damper system on a moving frictional surface. The system dynamics is time-varying, since three different regimes of motion, characterized by different degrees of freedom, are possible. Indeed the system, which schematizes a blade cross-section, can experience stick and slip motions when it is in contact with the glass surface, and free flight motion when it is detached. The contact between the system and the surface is governed by Stribeck's friction law and Poisson's impact law, which make the dynamics non-smooth. The model is numerically implemented in an event-driven code, and simulations are performed which reproduce the three basic classes of undesired oscillations observed in the motion of real windscreen wipers, i.e., squeal, reversal and chattering noises. Attention is focused on the causes of these vibrations, and remedies for reducing or avoiding them are proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3193487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact