We prove a height-estimate (distance from the tangent hyperplane) for Lambda-minima of the perimeter in the sub-Riemannian Heisenberg group. The estimate is in terms of a power of the excess (L^2-mean oscillation of the normal) and its proof is based on a new coarea formula for rectifiable sets in the Heisenberg group.

Height estimate and slicing formulas in the Heisenberg group

MONTI, ROBERTO;VITTONE, DAVIDE
2015

Abstract

We prove a height-estimate (distance from the tangent hyperplane) for Lambda-minima of the perimeter in the sub-Riemannian Heisenberg group. The estimate is in terms of a power of the excess (L^2-mean oscillation of the normal) and its proof is based on a new coarea formula for rectifiable sets in the Heisenberg group.
File in questo prodotto:
File Dimensione Formato  
apde-v8-n6-p04-p.pdf

accesso aperto

Descrizione: 2015-MontiV-APDE
Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3208383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact