NIO1 is a compact source of negative ions jointly developed by RFX and INFN, to study the physics of production and acceleration of H- beams. Negative ions, up to 120 mA of current, are extracted from a radiofrequency driven plasma, by means of a gridded electrode (plasma grid, PG) featuring 9 apertures arranged in a 3x3 square lattice. The same aperture pattern is replicated in the following electrodes, allowing ion acceleration up to 60 keV. All electrodes are realized in copper, by electro-deposition technique, leaving empty slots in the metal to place magnets and to flow water for the grid cooling. The first set of electrodes was completed, installed in the source and tested. At the same time, an upgrade of the extraction system was carried out, in order to optimize the beam optics and to explore alternative electrostatic configurations. In particular, the accelerator will be modified by completely replacing the EG grid, exploiting the modularity of NIO1. The new electrode will feature other slots in between apertures, to place additional magnets. This allows testing different magnetic configurations, to optimize electron filtering and residual ion deflection. The present paper describes the theoretical activities driving the design of these new extractors, carried out with most updated numerical codes, and exploiting the synergy with the refined modeling of the 40 A ITER negative ion sources, under development at Consorzio RFX. Beam simulations are performed both with tracing codes (SLACCAD and OPERA) and with particle in cell codes (ACCPIC)

Design of the new extraction grid for the NIO1 negative ion source

VELTRI, PIERLUIGI;BALTADOR, CARLO
2015

Abstract

NIO1 is a compact source of negative ions jointly developed by RFX and INFN, to study the physics of production and acceleration of H- beams. Negative ions, up to 120 mA of current, are extracted from a radiofrequency driven plasma, by means of a gridded electrode (plasma grid, PG) featuring 9 apertures arranged in a 3x3 square lattice. The same aperture pattern is replicated in the following electrodes, allowing ion acceleration up to 60 keV. All electrodes are realized in copper, by electro-deposition technique, leaving empty slots in the metal to place magnets and to flow water for the grid cooling. The first set of electrodes was completed, installed in the source and tested. At the same time, an upgrade of the extraction system was carried out, in order to optimize the beam optics and to explore alternative electrostatic configurations. In particular, the accelerator will be modified by completely replacing the EG grid, exploiting the modularity of NIO1. The new electrode will feature other slots in between apertures, to place additional magnets. This allows testing different magnetic configurations, to optimize electron filtering and residual ion deflection. The present paper describes the theoretical activities driving the design of these new extractors, carried out with most updated numerical codes, and exploiting the synergy with the refined modeling of the 40 A ITER negative ion sources, under development at Consorzio RFX. Beam simulations are performed both with tracing codes (SLACCAD and OPERA) and with particle in cell codes (ACCPIC)
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3220316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact