Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method.

Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis

PEGGION, CATERINA;MASSIMINO, MARIA LINA;REGGIANI, CARLO;SORGATO, MARIA CATIA;BERTOLI, ALESSANDRO;STELLA, ROBERTO
2017

Abstract

Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3220431
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact