Our focus is on constructing a multiscale nonparametric prior for densities. The Bayes density estimation literature is dominated by single scale methods, with the exception of Polya trees, which favor overly-spiky densities even when the truth is smooth. We propose a multiscale Bernstein polynomial family of priors, which produce smooth realizations that do not rely on hard partitioning of the support. At each level in an infinitely-deep binary tree, we place a beta dictionary density; within a scale the densities are equivalent to Bernstein polynomials. Using a stick-breaking characterization, stochastically decreasing weights are allocated to the finer scale dictionary elements. A slice sampler is used for posterior computation, and properties are described. The method characterizes densities with locally-varying smoothness, and can produce a sequence of coarse to fine density estimates. An extension for Bayesian testing of group differences is introduced and applied to DNA methylat...

Multiscale Bernstein polynomials for densities

CANALE, ANTONIO;
2016

Abstract

Our focus is on constructing a multiscale nonparametric prior for densities. The Bayes density estimation literature is dominated by single scale methods, with the exception of Polya trees, which favor overly-spiky densities even when the truth is smooth. We propose a multiscale Bernstein polynomial family of priors, which produce smooth realizations that do not rely on hard partitioning of the support. At each level in an infinitely-deep binary tree, we place a beta dictionary density; within a scale the densities are equivalent to Bernstein polynomials. Using a stick-breaking characterization, stochastically decreasing weights are allocated to the finer scale dictionary elements. A slice sampler is used for posterior computation, and properties are described. The method characterizes densities with locally-varying smoothness, and can produce a sequence of coarse to fine density estimates. An extension for Bayesian testing of group differences is introduced and applied to DNA methylat...
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3222935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact