Environmental stress conditions are ultimately related to the induction of oxidative stress in organisms, as a consequence of an increased production of reactive oxygen species (ROS). This could be exploited to study sub-lethal effects induced by the environment in the organisms. In the present work, we evaluate the possibility to use the colonial ascidian Botryllus schlosseri as a bioindicator, to assess the environmental quality in the Lagoon of Venice. Three colony batches were immersed, for 22 days, at two sites (1 and 2) with different grades of hydrodynamics and anthropogenic impact and physico-chemical features of seawater; a control batch was kept in a large tank with continuous seawater flow at the Marine Station of the Department of Biology, University of Padova, in Chioggia (site 3). Seawater at site 2 had higher pH and temperature than site 1. Colonies were then retrieved, their mRNA was extracted and the level of transcription of genes involved in oxidative stress response (glutathione synthase, g-glutamyl-cysteine ligase, modulatory subunit, two isoforms of glutathione peroxidases and Cu/Zn superoxide dismutase) was evaluated. In colonies from sites 1 and 2, most genes showed significantly increased transcriptional levels with respect to control values. Spectrophotometric analyses of colony homogenates revealed that the enzymatic activity of superoxide dismutase and catalase was higher in colonies from site 2 as compared to site 1, allowing us to speculate that colonies in site 2 were under higher stress level than those in site 1. Overall, we can conclude that B. schlosseri seems a good indicator of the ecological status of the Lagoon environment, within a range of pH and temperature in which colonies are used to live.

Expression of genes involved in oxidative stress response in colonies of the ascidian Botryllus schlosseri exposed to various environmental conditions

BALLIN, FRANCESCA;FRANCHI, NICOLA;FABBRI, ELENA;BALLARIN, LORIANO
2017

Abstract

Environmental stress conditions are ultimately related to the induction of oxidative stress in organisms, as a consequence of an increased production of reactive oxygen species (ROS). This could be exploited to study sub-lethal effects induced by the environment in the organisms. In the present work, we evaluate the possibility to use the colonial ascidian Botryllus schlosseri as a bioindicator, to assess the environmental quality in the Lagoon of Venice. Three colony batches were immersed, for 22 days, at two sites (1 and 2) with different grades of hydrodynamics and anthropogenic impact and physico-chemical features of seawater; a control batch was kept in a large tank with continuous seawater flow at the Marine Station of the Department of Biology, University of Padova, in Chioggia (site 3). Seawater at site 2 had higher pH and temperature than site 1. Colonies were then retrieved, their mRNA was extracted and the level of transcription of genes involved in oxidative stress response (glutathione synthase, g-glutamyl-cysteine ligase, modulatory subunit, two isoforms of glutathione peroxidases and Cu/Zn superoxide dismutase) was evaluated. In colonies from sites 1 and 2, most genes showed significantly increased transcriptional levels with respect to control values. Spectrophotometric analyses of colony homogenates revealed that the enzymatic activity of superoxide dismutase and catalase was higher in colonies from site 2 as compared to site 1, allowing us to speculate that colonies in site 2 were under higher stress level than those in site 1. Overall, we can conclude that B. schlosseri seems a good indicator of the ecological status of the Lagoon environment, within a range of pH and temperature in which colonies are used to live.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3223074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact