Fe2O3 nanodeposits have been grown on fluorine-doped tin oxide (FTO) substrates by plasma enhanced-chemical vapor deposition (PE-CVD). Subsequently, the obtained systems have been functionalized through the sequential introduction of TiO2 and Au nanoparticles (NPs) by means of radio frequency (RF)-sputtering. The target nanocomposites have been specifically optimized in view of their ultimate functional application in solar-driven H2 generation. In the present study, our attention is focused on a detailed X-ray photoelectron spectroscopy (XPS) characterization of the surface composition for a representative Fe2O3-TiO2-Au specimen. In particular, this report provides a detailed discussion of the analyzed C 1s, O 1s, Fe 2p, Ti 2p, and Au 4f regions. The obtained results point to the formation of pure Fe2O3-TiO2-Au composites, with gold present only in its metallic state and each of the constituents maintaining its chemical identity.

XPS analysis of Fe2O3-TiO2-Au nanocomposites prepared by a plasma-assisted route

CARRARO, GIORGIO;TONIATO, ELISA;GASPAROTTO, ALBERTO;MACCATO, CHIARA;
2016

Abstract

Fe2O3 nanodeposits have been grown on fluorine-doped tin oxide (FTO) substrates by plasma enhanced-chemical vapor deposition (PE-CVD). Subsequently, the obtained systems have been functionalized through the sequential introduction of TiO2 and Au nanoparticles (NPs) by means of radio frequency (RF)-sputtering. The target nanocomposites have been specifically optimized in view of their ultimate functional application in solar-driven H2 generation. In the present study, our attention is focused on a detailed X-ray photoelectron spectroscopy (XPS) characterization of the surface composition for a representative Fe2O3-TiO2-Au specimen. In particular, this report provides a detailed discussion of the analyzed C 1s, O 1s, Fe 2p, Ti 2p, and Au 4f regions. The obtained results point to the formation of pure Fe2O3-TiO2-Au composites, with gold present only in its metallic state and each of the constituents maintaining its chemical identity.
2016
File in questo prodotto:
File Dimensione Formato  
reprint_2016_SSS_Fe_Ti_Au.pdf

accesso aperto

Descrizione: reprint
Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso libero
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3226742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact