Consider a normal Ornstein-Uhlenbeck semigroup in Euclidean space, whose covariance is given by a positive definite matrix. The drift matrix is assumed to have eigenvalues only in the left half-plane. We prove that the associated maximal operator is of weak type (1, 1) with respect to the invariant measure. This extends earlier work by G. Mauceri and L. Noselli. The proof goes via the special case where the matrix defining the covariance is I and the drift matrix is diagonal.

The maximal operator of a normal Ornstein-Uhlenbeck semigroup is of weak type (1,1)

CASARINO, VALENTINA;CIATTI, PAOLO;
2020

Abstract

Consider a normal Ornstein-Uhlenbeck semigroup in Euclidean space, whose covariance is given by a positive definite matrix. The drift matrix is assumed to have eigenvalues only in the left half-plane. We prove that the associated maximal operator is of weak type (1, 1) with respect to the invariant measure. This extends earlier work by G. Mauceri and L. Noselli. The proof goes via the special case where the matrix defining the covariance is I and the drift matrix is diagonal.
File in questo prodotto:
File Dimensione Formato  
Casarino_etal_published_SNS.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 590.38 kB
Formato Adobe PDF
590.38 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3227457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact