Mitochondria-dependent programmed cell death (PCD) in yeast shares many features with the intrinsic apoptotic pathway of mammals. With many stimuli, increased cytosolic [Ca2+] and ROS generation are the triggering signals that lead to mitochondrial permeabilization and release of proapoptotic factors, which initiates yeast PCD. While in mammals the permeability transition pore (PTP), a high-conductance inner membrane channel activated by increased matrix Ca2+ and oxidative stress, is recognized as part of this signaling cascade, whether a similar process occurs in yeast is still debated. The potential role of the PTP in yeast PCD has generally been overlooked because yeast mitochondria lack the Ca2+ uniporter, which in mammals allows rapid equilibration of cytosolic Ca2+ with the matrix. In this short review we discuss the nature of the yeast permeability transition and reevaluate its potential role in the effector phase of yeast PCD triggered by Ca2+ and oxidative stress. (C) 2016 Elsevier Ltd. All rights reserved.

Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast

CARRARO, MICHELA;BERNARDI, PAOLO
2016

Abstract

Mitochondria-dependent programmed cell death (PCD) in yeast shares many features with the intrinsic apoptotic pathway of mammals. With many stimuli, increased cytosolic [Ca2+] and ROS generation are the triggering signals that lead to mitochondrial permeabilization and release of proapoptotic factors, which initiates yeast PCD. While in mammals the permeability transition pore (PTP), a high-conductance inner membrane channel activated by increased matrix Ca2+ and oxidative stress, is recognized as part of this signaling cascade, whether a similar process occurs in yeast is still debated. The potential role of the PTP in yeast PCD has generally been overlooked because yeast mitochondria lack the Ca2+ uniporter, which in mammals allows rapid equilibration of cytosolic Ca2+ with the matrix. In this short review we discuss the nature of the yeast permeability transition and reevaluate its potential role in the effector phase of yeast PCD triggered by Ca2+ and oxidative stress. (C) 2016 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3227623
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 81
social impact