Proteomics, one of the major tools of ‘omics’ is evolving phenomenally since the development and application of two-dimensional gel electrophoresis coupled with mass spectrometry at the end of twentieth century. However, the adoption and application of advanced proteomic technologies in understanding plant–pathogen interactions are far less, when compared to their application in other related fields of systems biology. Hence, this review is diligently focused on the advances in various proteomic approaches and their gamut of applications in different facets of phyto-pathoproteomics. Especially, the scope and application of proteomics in understanding fundamental concepts of plant–pathogen interactions such as identification of pathogenicity determinants (effector proteins), disease resistance proteins (resistance and pathogenesisrelated proteins) and their regulation by post-translational modifications have been portrayed. This review, for the first time, presents a critical appraisal of various proteomic applications by assessing all phyto-pathoproteomics-related research publications that were published in peer reviewed journals, during the period 2000–2016. This assessment has revealed the present status and contribution of proteomic applications in different categories of p phytopathoproteomics, namely, cellular components, host–pathogen interactions, model and non-model plants, and utilization of different proteomic approaches. Comprehensively, the analysis highlights the burgeoning application of global proteome approaches in various crop diseases, and demand for acceleration in deploying advanced proteomic technologies to thoroughly comprehend the intricacies of complex and rapidly evolving plant–pathogen interactions.

Advances in proteomic technologies and their scope of application in understanding plant–pathogen interactions

MASI, ANTONIO;
2017

Abstract

Proteomics, one of the major tools of ‘omics’ is evolving phenomenally since the development and application of two-dimensional gel electrophoresis coupled with mass spectrometry at the end of twentieth century. However, the adoption and application of advanced proteomic technologies in understanding plant–pathogen interactions are far less, when compared to their application in other related fields of systems biology. Hence, this review is diligently focused on the advances in various proteomic approaches and their gamut of applications in different facets of phyto-pathoproteomics. Especially, the scope and application of proteomics in understanding fundamental concepts of plant–pathogen interactions such as identification of pathogenicity determinants (effector proteins), disease resistance proteins (resistance and pathogenesisrelated proteins) and their regulation by post-translational modifications have been portrayed. This review, for the first time, presents a critical appraisal of various proteomic applications by assessing all phyto-pathoproteomics-related research publications that were published in peer reviewed journals, during the period 2000–2016. This assessment has revealed the present status and contribution of proteomic applications in different categories of p phytopathoproteomics, namely, cellular components, host–pathogen interactions, model and non-model plants, and utilization of different proteomic approaches. Comprehensively, the analysis highlights the burgeoning application of global proteome approaches in various crop diseases, and demand for acceleration in deploying advanced proteomic technologies to thoroughly comprehend the intricacies of complex and rapidly evolving plant–pathogen interactions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3227707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact