Human herpesvirus 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6 integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevent telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. Next, we investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A ability to integrate its genome into host chromosomes. Incubation of telomerase expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency (p<0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affect the generation of cellular clones containing integrated HHV-6A.Importance Human herpesvirus 6A/B (HHV-6A/B) can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of varying length (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA-damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure referred to as G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6. This study is the first of its kind and suggests that telomerase activity is likely essential to restore a functional telomere of adequate length following HHV-6A integration.

Stabilization of telomere G-quadruplexes interferes with human herpesvirus 6A chromosomal integration

ARTUSI, SARA;RICHTER, SARA;
2017

Abstract

Human herpesvirus 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6 integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevent telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. Next, we investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A ability to integrate its genome into host chromosomes. Incubation of telomerase expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency (p<0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affect the generation of cellular clones containing integrated HHV-6A.Importance Human herpesvirus 6A/B (HHV-6A/B) can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of varying length (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA-damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure referred to as G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6. This study is the first of its kind and suggests that telomerase activity is likely essential to restore a functional telomere of adequate length following HHV-6A integration.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3227936
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 35
social impact