Grape quality and yield can be impaired by bunch rot, caused by the necrotrophic fungus Botrytis cinerea. Infection often occurs at flowering, and the pathogen stays quiescent until fruit maturity. Here, we report a molecular analysis of the early interaction between B. cinerea and Vitis vinifera flowers, using a controlled infection system, confocal microscopy and integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cultivar Pinot Noir were infected with green fluorescent protein (GFP)-labelled B. cinerea and studied at 24 and 96 hours post-inoculation (h.p.i.). We observed that penetration of the epidermis by B. cinerea coincided with increased expression of genes encoding cell-wall-degrading enzymes, phytotoxins and proteases. Grapevine responded with a rapid defence reaction involving 1193 genes associated with the accumulation of antimicrobial proteins, polyphenols, reactive oxygen species and cell wall reinforcement. At 96 h.p.i., the reaction appears largely diminished both in the host and in the pathogen. Our data indicate that the defence responses of the grapevine flower collectively are able to restrict invasive fungal growth into the underlying tissues, thereby forcing the fungus to enter quiescence until the conditions become more favourable to resume pathogenic development.

Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence

ZOTTINI, MICHELA;
2017

Abstract

Grape quality and yield can be impaired by bunch rot, caused by the necrotrophic fungus Botrytis cinerea. Infection often occurs at flowering, and the pathogen stays quiescent until fruit maturity. Here, we report a molecular analysis of the early interaction between B. cinerea and Vitis vinifera flowers, using a controlled infection system, confocal microscopy and integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cultivar Pinot Noir were infected with green fluorescent protein (GFP)-labelled B. cinerea and studied at 24 and 96 hours post-inoculation (h.p.i.). We observed that penetration of the epidermis by B. cinerea coincided with increased expression of genes encoding cell-wall-degrading enzymes, phytotoxins and proteases. Grapevine responded with a rapid defence reaction involving 1193 genes associated with the accumulation of antimicrobial proteins, polyphenols, reactive oxygen species and cell wall reinforcement. At 96 h.p.i., the reaction appears largely diminished both in the host and in the pathogen. Our data indicate that the defence responses of the grapevine flower collectively are able to restrict invasive fungal growth into the underlying tissues, thereby forcing the fungus to enter quiescence until the conditions become more favourable to resume pathogenic development.
2017
File in questo prodotto:
File Dimensione Formato  
Plant,_Cell_&_Environment Haile et al 2017.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso gratuito
Dimensione 3.26 MB
Formato Adobe PDF
3.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3228159
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact