BACKGROUND: After the re-introduction of ImmunoCAP® ISAC sIgE 112 on the market, we undertook a study to evaluate the performance of this multiplex-based immunoassay for IgE measurements to allergen components. METHODS: The study was carried out at 22 European and one South African site. Microarrays from different batches, eight specific IgE (sIgE) positive, three sIgE negative serum samples and a calibration sample were sent to participating laboratories where assays were performed according to the manufacturer's instructions. RESULTS: For both the negative and positive samples results were consistent between sites, with a very low frequency of false positive results (0.014%). A similar pattern of results for each of the samples was observed across the 23 sites. Homogeneity analysis of all measurements for each sample were well clustered, indicating good reproducibility; unsupervised hierarchical clustering and classification via random forests, showed clustering of identical samples independent of the assay site. Analysis of raw continuous data confirmed the good accuracy across the study sites; averaged standardized, site-specific ISU-E values fell close to the center of the distribution of measurements from all sites. After outlier filtering, variability across the whole study was estimated at 25.5%, with values of 22%, 27.1% and 22.4% for the 'Low', 'Moderate to High' and 'Very High' concentration categories, respectively. CONCLUSIONS: The study shows a robust performance of the ImmunoCAP® ISAC 112 immunoassay at different sites. Essentially the same results were obtained irrespective of assay site, laboratory-specific conditions and instruments, operator, or the use of microarrays from different batches.

Performance evaluation of ImmunoCAP® ISAC 112: A multi-site study

PLEBANI, MARIO;
2017

Abstract

BACKGROUND: After the re-introduction of ImmunoCAP® ISAC sIgE 112 on the market, we undertook a study to evaluate the performance of this multiplex-based immunoassay for IgE measurements to allergen components. METHODS: The study was carried out at 22 European and one South African site. Microarrays from different batches, eight specific IgE (sIgE) positive, three sIgE negative serum samples and a calibration sample were sent to participating laboratories where assays were performed according to the manufacturer's instructions. RESULTS: For both the negative and positive samples results were consistent between sites, with a very low frequency of false positive results (0.014%). A similar pattern of results for each of the samples was observed across the 23 sites. Homogeneity analysis of all measurements for each sample were well clustered, indicating good reproducibility; unsupervised hierarchical clustering and classification via random forests, showed clustering of identical samples independent of the assay site. Analysis of raw continuous data confirmed the good accuracy across the study sites; averaged standardized, site-specific ISU-E values fell close to the center of the distribution of measurements from all sites. After outlier filtering, variability across the whole study was estimated at 25.5%, with values of 22%, 27.1% and 22.4% for the 'Low', 'Moderate to High' and 'Very High' concentration categories, respectively. CONCLUSIONS: The study shows a robust performance of the ImmunoCAP® ISAC 112 immunoassay at different sites. Essentially the same results were obtained irrespective of assay site, laboratory-specific conditions and instruments, operator, or the use of microarrays from different batches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3228590
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact