Nanoheterostructures based on metal oxide semiconductors have emerged as promising materials for the conversion of sunlight into chemical energy. In the present study, ZnO-based nanocomposites have been developed by a hybrid vapor phase route, consisting in the chemical vapor deposition of ZnO systems on fluorine-doped tin oxide substrates, followed by the functionalization with Fe2O3 or WO3 via radio frequency sputtering. The target systems are subjected to thermal treatment in air both prior and after sputtering, and their properties, including structure, chemical composition, morphology, and optical absorption, are investigated by a variety of characterization methods. The obtained results evidence the formation of highly porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3 or WO3 overlayer. Photocurrent density measurements for solar-triggered water splitting reveal in both cases a performance improvement with respect to bare zinc oxide, that is mainly traced back to an enhanced separation of photogenerated charge carriers thanks to the intimate contact between the two oxides. This achievement can be regarded as a valuable result in view of future optimization of similar nanoheterostructured photoanodes.

Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting

CARRARO, GIORGIO;GASPAROTTO, ALBERTO;MACCATO, CHIARA;SADA, CINZIA;
2017

Abstract

Nanoheterostructures based on metal oxide semiconductors have emerged as promising materials for the conversion of sunlight into chemical energy. In the present study, ZnO-based nanocomposites have been developed by a hybrid vapor phase route, consisting in the chemical vapor deposition of ZnO systems on fluorine-doped tin oxide substrates, followed by the functionalization with Fe2O3 or WO3 via radio frequency sputtering. The target systems are subjected to thermal treatment in air both prior and after sputtering, and their properties, including structure, chemical composition, morphology, and optical absorption, are investigated by a variety of characterization methods. The obtained results evidence the formation of highly porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3 or WO3 overlayer. Photocurrent density measurements for solar-triggered water splitting reveal in both cases a performance improvement with respect to bare zinc oxide, that is mainly traced back to an enhanced separation of photogenerated charge carriers thanks to the intimate contact between the two oxides. This achievement can be regarded as a valuable result in view of future optimization of similar nanoheterostructured photoanodes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3230370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
social impact