Current imaging techniques for the characterization of differentiated corneal limbal stem cells are destructive and cannot be used in eye bank for monitoring the regenerated epithelium in culture. We presented a minimally invasive, multimodal, marker-free imaging method for the investigation of epithelia regenerated with cultured human donor corneal limbal epithelial stem cells. Two-photon fluorescence and harmonic generation signals were collected from specimens in culture and used for evaluating the structure and morphology of epithelia cultured on two different bio-scaffolds; in addition, donor human corneal tissues were used as controls. The method provided reliable information on the organization of cellular and extracellular components of biomaterial substrates and was highly sensitive to determine differences between the density packing arrangement of epithelial cells of different biomaterials without relying on inferences from exogenous labels. The present minimally invasive standardized quality control methodology can be reliably translated to eye banks and used for monitoring harvested corneal limbal stem cells growth and differentiation in bioengineered materials.
Multimodal imaging quality control of epithelia regenerated with cultured human donor corneal limbal epithelial stem cells
LOMBARDO, MARCO;SERRAO, SEBASTIANO;DI IORIO, MARIO VINCENZO;
2017
Abstract
Current imaging techniques for the characterization of differentiated corneal limbal stem cells are destructive and cannot be used in eye bank for monitoring the regenerated epithelium in culture. We presented a minimally invasive, multimodal, marker-free imaging method for the investigation of epithelia regenerated with cultured human donor corneal limbal epithelial stem cells. Two-photon fluorescence and harmonic generation signals were collected from specimens in culture and used for evaluating the structure and morphology of epithelia cultured on two different bio-scaffolds; in addition, donor human corneal tissues were used as controls. The method provided reliable information on the organization of cellular and extracellular components of biomaterial substrates and was highly sensitive to determine differences between the density packing arrangement of epithelial cells of different biomaterials without relying on inferences from exogenous labels. The present minimally invasive standardized quality control methodology can be reliably translated to eye banks and used for monitoring harvested corneal limbal stem cells growth and differentiation in bioengineered materials.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.