In this paper, we consider the stability of a class of deter- ministic and stochastic SEIRS epidemic models with delay. Indeed, we assume that the transmission rate could be stochastic and the presence of a latency period of r consecutive days, where r is a fixed positive integer, in the “exposed” individuals class E. Studying the eigenvalues of the linearized system, we obtain conditions for the stability of the free disease equilibrium, in both the cases of the deterministic model with and without delay. In this latter case, we also get conditions for the sta- bility of the coexistence equilibrium. In the stochastic case, we are able to derive a concentration result for the random fluctuations and then, using the Lyapunov method, to check that under suitable assumptions the free disease equilibrium is still stable.
Stochastic Epidemic SEIRS Models with a Constant Latency Period
FERRANTE, MARCO;
2017
Abstract
In this paper, we consider the stability of a class of deter- ministic and stochastic SEIRS epidemic models with delay. Indeed, we assume that the transmission rate could be stochastic and the presence of a latency period of r consecutive days, where r is a fixed positive integer, in the “exposed” individuals class E. Studying the eigenvalues of the linearized system, we obtain conditions for the stability of the free disease equilibrium, in both the cases of the deterministic model with and without delay. In this latter case, we also get conditions for the sta- bility of the coexistence equilibrium. In the stochastic case, we are able to derive a concentration result for the random fluctuations and then, using the Lyapunov method, to check that under suitable assumptions the free disease equilibrium is still stable.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.