The sliding of non-Newtonian drops down planar surfaces results in a complex, entangled balance between interfacial forces and non-linear viscous dissipation, which has been scarcely inspected. In particular, a detailed understanding of the role played by the polymer flexibility and the resulting elasticity of the polymer solution is still lacking. To this aim, we have considered polyacrylamide (PAA) solutions of different molecular weights, suspended either in water or in glycerol/water mixtures. In contrast to drops of stiff polymers, drops of flexible polymers exhibit a remarkable elongation in steady sliding. This difference is most likely attributed to variation of viscous bending as a consequence of variation of shear thinning. Moreover, an "optimal elasticity'' of the polymer seems to be required for this drop elongation to be visible. We have complemented experimental results with numerical simulations of a viscoelastic FENE-P drop. This has been a decisive step to unraveling how a change of the elastic parameters (e.g. polymer relaxation time, maximum extensibility) affects the dimensionless sliding velocity.

Stretching of viscoelastic drops in steady sliding

VARAGNOLO, SILVIA;FILIPPI, DANIELE;MISTURA, GIAMPAOLO;PIERNO, MATTEO AMBROGIO PAOLO;
2017

Abstract

The sliding of non-Newtonian drops down planar surfaces results in a complex, entangled balance between interfacial forces and non-linear viscous dissipation, which has been scarcely inspected. In particular, a detailed understanding of the role played by the polymer flexibility and the resulting elasticity of the polymer solution is still lacking. To this aim, we have considered polyacrylamide (PAA) solutions of different molecular weights, suspended either in water or in glycerol/water mixtures. In contrast to drops of stiff polymers, drops of flexible polymers exhibit a remarkable elongation in steady sliding. This difference is most likely attributed to variation of viscous bending as a consequence of variation of shear thinning. Moreover, an "optimal elasticity'' of the polymer seems to be required for this drop elongation to be visible. We have complemented experimental results with numerical simulations of a viscoelastic FENE-P drop. This has been a decisive step to unraveling how a change of the elastic parameters (e.g. polymer relaxation time, maximum extensibility) affects the dimensionless sliding velocity.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3240703
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact