We present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We find a scaling law describing the roughness-induced fluidization as a function of the density of the grooves, thus fluidization can be predicted and quantitatively regulated. This suggests common scenarios for droplet trapping and release, potentially applicable for other jammed systems as well. Numerical simulations confirm these views and provide a direct link between fluidization and the spatial distribution of plastic rearrangements.

Fluidization and wall slip of soft glassy materials by controlled surface roughness

DERZSI, LADISLAV;FILIPPI, DANIELE;MISTURA, GIAMPAOLO;PIERNO, MATTEO AMBROGIO PAOLO;
2017

Abstract

We present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We find a scaling law describing the roughness-induced fluidization as a function of the density of the grooves, thus fluidization can be predicted and quantitatively regulated. This suggests common scenarios for droplet trapping and release, potentially applicable for other jammed systems as well. Numerical simulations confirm these views and provide a direct link between fluidization and the spatial distribution of plastic rearrangements.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3240737
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact