Background and aims: Biostimulants are natural compounds that enhance plant growth and plant nutrient use efficiency. In this study, biostimulant effects of humic substances (HS) extracted from leonardites were analysed on the metabolism of maize plants grown in hydroponic conditions. Methods: HS extracted from four leonardites were tested for their auxin-like and gibberellin-like activities. Then, 11 day old maize seedlings were treated for 48 h with five concentrations (0, 0.1, 0.5, 1, and 10 mg C L−1) of HS. After sampling, root growth and morphology, glutamine synthetase (GS) activity, glutamate synthase (GOGAT) activity, total protein content, soluble sugars content, phenylalanine ammonia-lyase (PAL) activity, soluble phenols, and free phenolic acids were analysed. Results: HS from leonardites had similar spectroscopic pattern, with small differences. The HS from the South Dakota lignite (HS_USA) had more carboxylic groups, whereas the three from Turkish mines had more aromatic and aliphatic structures. HS_USA best enhanced total root growth, root surface area, and proliferation of secondary roots. Plant nutrient use efficiency was enhanced by HS_4, HS_USA and HS_B, with increment of GS and GOGAT enzymes activity and total protein production. HS stimulated also PAL enzyme activity, followed by a higher production of total soluble phenols, p-hydroxybenzoic acid, p-coumarilic acid, and chlorogenic acid. Conclusion: This study found that, although the activity of the HS depended on the origin of the leonardite, these compounds can be attributed to the biostimulant products, eliciting plant growth, nitrogen metabolism, and accumulation of phenolic substances. © 2017 Springer International Publishing AG

Biostimulant activity of humic substances extracted from leonardites

CONSELVAN, GIOVANNI BATTISTA;PIZZEGHELLO, DIEGO;FRANCIOSO, ORNELLA;NARDI, SERENELLA;CARLETTI, PAOLO
2017

Abstract

Background and aims: Biostimulants are natural compounds that enhance plant growth and plant nutrient use efficiency. In this study, biostimulant effects of humic substances (HS) extracted from leonardites were analysed on the metabolism of maize plants grown in hydroponic conditions. Methods: HS extracted from four leonardites were tested for their auxin-like and gibberellin-like activities. Then, 11 day old maize seedlings were treated for 48 h with five concentrations (0, 0.1, 0.5, 1, and 10 mg C L−1) of HS. After sampling, root growth and morphology, glutamine synthetase (GS) activity, glutamate synthase (GOGAT) activity, total protein content, soluble sugars content, phenylalanine ammonia-lyase (PAL) activity, soluble phenols, and free phenolic acids were analysed. Results: HS from leonardites had similar spectroscopic pattern, with small differences. The HS from the South Dakota lignite (HS_USA) had more carboxylic groups, whereas the three from Turkish mines had more aromatic and aliphatic structures. HS_USA best enhanced total root growth, root surface area, and proliferation of secondary roots. Plant nutrient use efficiency was enhanced by HS_4, HS_USA and HS_B, with increment of GS and GOGAT enzymes activity and total protein production. HS stimulated also PAL enzyme activity, followed by a higher production of total soluble phenols, p-hydroxybenzoic acid, p-coumarilic acid, and chlorogenic acid. Conclusion: This study found that, although the activity of the HS depended on the origin of the leonardite, these compounds can be attributed to the biostimulant products, eliciting plant growth, nitrogen metabolism, and accumulation of phenolic substances. © 2017 Springer International Publishing AG
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3241046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 43
social impact