Geranyl flavones have been studied as compounds that potentially can be developed as anti-inflammatory agents. A series of natural geranylated flavanones was isolated from Paulownia tomentosa fruits, and these compounds were studied for their anti-inflammatory activity and possible mechanism of action. Two new compounds were characterized [paulownione C (17) and tomentodiplacone O (20)], and all of the isolated derivatives were assayed for their ability to inhibit cyclooxygenases (COX-1 and COX-2) and 5-lipoxygenase (5-LOX). The compounds tested showed variable degrees of activity, with several of them showing activity comparable to or greater than the standards used in COX-1, COX-2, and 5-LOX assays. However, only the compound tomentodiplacone O (20) showed more selectivity against COX-2 versus COX-1 when compared with ibuprofen. The ability of the test compounds to interact with the above-mentioned enzymes was supported by docking studies, which revealed the possible incorporation of selected test substances into the active sites of these enzymes. Furthermore, one of the COX/LOX dual inhibitors, diplacone (14) (a major geranylated flavanone of P. tomentosa), was studied in vitro to obtain a proteomic overview of its effect on inflammation in LPS-treated THP-1 macrophages, supporting its previously observed anti-inflammatory activity and revealing the mechanism of its anti-inflammatory effect.

Anti-inflammatory Activity of Natural Geranylated Flavonoids: Cyclooxygenase and Lipoxygenase Inhibitory Properties and Proteomic Analysis

DALL'ACQUA, STEFANO;
2017

Abstract

Geranyl flavones have been studied as compounds that potentially can be developed as anti-inflammatory agents. A series of natural geranylated flavanones was isolated from Paulownia tomentosa fruits, and these compounds were studied for their anti-inflammatory activity and possible mechanism of action. Two new compounds were characterized [paulownione C (17) and tomentodiplacone O (20)], and all of the isolated derivatives were assayed for their ability to inhibit cyclooxygenases (COX-1 and COX-2) and 5-lipoxygenase (5-LOX). The compounds tested showed variable degrees of activity, with several of them showing activity comparable to or greater than the standards used in COX-1, COX-2, and 5-LOX assays. However, only the compound tomentodiplacone O (20) showed more selectivity against COX-2 versus COX-1 when compared with ibuprofen. The ability of the test compounds to interact with the above-mentioned enzymes was supported by docking studies, which revealed the possible incorporation of selected test substances into the active sites of these enzymes. Furthermore, one of the COX/LOX dual inhibitors, diplacone (14) (a major geranylated flavanone of P. tomentosa), was studied in vitro to obtain a proteomic overview of its effect on inflammation in LPS-treated THP-1 macrophages, supporting its previously observed anti-inflammatory activity and revealing the mechanism of its anti-inflammatory effect.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3241573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 70
social impact