Let G be a finite 2-generated soluble group and suppose that 〈a1,b1〉=〈a2,b2〉=G. Then there exist c1,c2 such that 〈a1,c1〉=〈c1,c2〉=〈c2,a2〉=G. Equivalently, the subgraph Δ(G) of the generating graph of a 2-generated finite soluble group G obtained by removing the isolated vertices has diameter at most 3. We construct a 2-generated group G of order 210⋅32 for which this bound is sharp. However a stronger result holds if G′ has odd order or G′ is nilpotent: in this case there exists b∈G with 〈a1,b〉=〈a2,b〉=G.

The diameter of the generating graph of a finite soluble group

LUCCHINI, ANDREA
2017

Abstract

Let G be a finite 2-generated soluble group and suppose that 〈a1,b1〉=〈a2,b2〉=G. Then there exist c1,c2 such that 〈a1,c1〉=〈c1,c2〉=〈c2,a2〉=G. Equivalently, the subgraph Δ(G) of the generating graph of a 2-generated finite soluble group G obtained by removing the isolated vertices has diameter at most 3. We construct a 2-generated group G of order 210⋅32 for which this bound is sharp. However a stronger result holds if G′ has odd order or G′ is nilpotent: in this case there exists b∈G with 〈a1,b〉=〈a2,b〉=G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3242185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact