A subset {g1,.., gd} of a finite group G invariably generates {g1x1,..,gdxd} generates G for every choice of xi ∈ G. The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal subject to the requirement that n randomly chosen elements of G invariably generate G. The first author recently showed that C(G)≤β|G| for some absolute constant β. In this paper we show that, when G is soluble, then β is at most 5/3. We also show that this is best possible. Furthermore, we show that, in general, for each ε > 0 there exists a constant cε such that C(G)≤(1+∈)|G|+c∈

An upper bound on the Chebotarev invariant of a finite group

LUCCHINI, ANDREA;GARETH, TRACEY
2017

Abstract

A subset {g1,.., gd} of a finite group G invariably generates {g1x1,..,gdxd} generates G for every choice of xi ∈ G. The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal subject to the requirement that n randomly chosen elements of G invariably generate G. The first author recently showed that C(G)≤β|G| for some absolute constant β. In this paper we show that, when G is soluble, then β is at most 5/3. We also show that this is best possible. Furthermore, we show that, in general, for each ε > 0 there exists a constant cε such that C(G)≤(1+∈)|G|+c∈
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3242189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact