On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per $8.0\times10^4$ years. We infer the component masses of the binary to be between 0.86 and 2.26 $M_\odot$, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17 to 1.60 $M_\odot$, with the total mass of the system $2.74^+0.04_-0.01\,M_\odot$. The source was localized within a sky region of 28 deg$^2$ (90% probability) and had a luminosity distance of $40^+8_-14$ Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the gamma-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short gamma-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation and cosmology.

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

Bazzan, M.;CIANI, GIACOMO;Lazzaro, C.;VARDARO, MARCO;
2017

Abstract

On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per $8.0\times10^4$ years. We infer the component masses of the binary to be between 0.86 and 2.26 $M_\odot$, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17 to 1.60 $M_\odot$, with the total mass of the system $2.74^+0.04_-0.01\,M_\odot$. The source was localized within a sky region of 28 deg$^2$ (90% probability) and had a luminosity distance of $40^+8_-14$ Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the gamma-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short gamma-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation and cosmology.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.119.161101_Ciani4.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3242494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7048
  • ???jsp.display-item.citation.isi??? 4360
  • OpenAlex ND
social impact