New inorganic-organic hybrid materials were prepared by free-radical polymerization of methyl methacrylate (MMA) with methacrylate-substituted oxotantalum cluster [Ta4O4(OEt)8(OMc)4] and their properties evaluated. The cluster was prepared by the reaction of the parent alkoxide with methacrylic acid. Samples of the hybrid materials were produced with Ta-cluster to methyl methacrylate in the ratios of 1:50 and 1:100 and were characterized by thermal and spectroscopic techniques. The glass transition temperatures of the hybrid materials are shifted to higher temperatures than pure PMMA as a result of cross-linking of the polymer by the oxotantalum clusters. The increase in T g is also observed from the dynamic mechanical analysis (DMA). Evidence of crosslinking between the Ta-cluster and PMMA is obtained from infrared spectroscopic study. Surface studies performed by X-ray photoelectron spectroscopy (XPS) provide information about the atomic concentrations of the surface and indicate tantalum bonded to oxygen.

Inorganic-Organic Hybrid Polymers from the Polymerisation of Methacrylate-Substituted Oxotantalum Clusters with Methylmethacrylate: A Thermomechanical and Spectroscopic Study

GROSS, SILVIA;
2005

Abstract

New inorganic-organic hybrid materials were prepared by free-radical polymerization of methyl methacrylate (MMA) with methacrylate-substituted oxotantalum cluster [Ta4O4(OEt)8(OMc)4] and their properties evaluated. The cluster was prepared by the reaction of the parent alkoxide with methacrylic acid. Samples of the hybrid materials were produced with Ta-cluster to methyl methacrylate in the ratios of 1:50 and 1:100 and were characterized by thermal and spectroscopic techniques. The glass transition temperatures of the hybrid materials are shifted to higher temperatures than pure PMMA as a result of cross-linking of the polymer by the oxotantalum clusters. The increase in T g is also observed from the dynamic mechanical analysis (DMA). Evidence of crosslinking between the Ta-cluster and PMMA is obtained from infrared spectroscopic study. Surface studies performed by X-ray photoelectron spectroscopy (XPS) provide information about the atomic concentrations of the surface and indicate tantalum bonded to oxygen.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3242666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact