We demonstrate the thermal stability up to 450 degrees C of a titanium(IV)-porphyrin monolayer grown on the rutile TiO2(110) surface. Starting from a film of metal-free tetra-phenyl-porphyrin, 2HTPP, deposited at room temperature, we show that, beyond the self-metalation reaction at 150 degrees-200 degrees C, a second phase transition takes place at similar to 350 degrees C. Using surface diffraction and microscopy, we observe a change of the phase symmetry from (2 x 4)-obliq to (2 x 6)-rect. Core level photoemission indicates that the chemical states of both the molecular tetrapyrrolic macrocycle and the substrate are unchanged. X-ray absorption spectroscopy reveals that the driving mechanism is a rotation of the phenyl terminations towards the substrate (flattening) that triggers a conformational change of the molecule through partial cyclo-dehydrogenation. From comparison with first principles calculations, we show that the common feature of these multiple phase transitions is the chemical nature of the porphyrin bonding atop the substrate oxygen rows: the coordination of the macrocycle central pocket to the oxygen atoms beneath is preserved throughout both the self-metalation and flattening reactions. The molecular orientation and arrangement are determined by steric constraints and intermolecular interactions, whereas the specific adsorption site is further stabilized by the interaction of the peripheral C-H network with the adjacent oxygen rows. Porphyrins are thus trapped at the TiO2(110) surface, where they demonstrate an exceptionally high thermal stability (up to similar to 450 degrees C), which makes this interface potentially useful for sensors and photocatalysis applications in harsh environments.

Very high temperature tiling of tetraphenylporphyrin on rutile TiO2(110)

Forrer, Daniel;Casarin, Maurizio;Vittadini, Andrea;
2017

Abstract

We demonstrate the thermal stability up to 450 degrees C of a titanium(IV)-porphyrin monolayer grown on the rutile TiO2(110) surface. Starting from a film of metal-free tetra-phenyl-porphyrin, 2HTPP, deposited at room temperature, we show that, beyond the self-metalation reaction at 150 degrees-200 degrees C, a second phase transition takes place at similar to 350 degrees C. Using surface diffraction and microscopy, we observe a change of the phase symmetry from (2 x 4)-obliq to (2 x 6)-rect. Core level photoemission indicates that the chemical states of both the molecular tetrapyrrolic macrocycle and the substrate are unchanged. X-ray absorption spectroscopy reveals that the driving mechanism is a rotation of the phenyl terminations towards the substrate (flattening) that triggers a conformational change of the molecule through partial cyclo-dehydrogenation. From comparison with first principles calculations, we show that the common feature of these multiple phase transitions is the chemical nature of the porphyrin bonding atop the substrate oxygen rows: the coordination of the macrocycle central pocket to the oxygen atoms beneath is preserved throughout both the self-metalation and flattening reactions. The molecular orientation and arrangement are determined by steric constraints and intermolecular interactions, whereas the specific adsorption site is further stabilized by the interaction of the peripheral C-H network with the adjacent oxygen rows. Porphyrins are thus trapped at the TiO2(110) surface, where they demonstrate an exceptionally high thermal stability (up to similar to 450 degrees C), which makes this interface potentially useful for sensors and photocatalysis applications in harsh environments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3243979
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact