A surrogate-assisted (SA) evolutionary algorithm for Multiobjective Optimization Problems (MOOPs) is presented as a contribution to Soft Computing (SC) in Artificial Intelligence (AI). Such algorithm is grounded on the cooperation between a “pure” evolutionary algorithm and a Kriging based algorithm featuring the Expected Hyper-Volume Improvement (EHVI) metric. Comparison with state-of-art pure and Kriging-assisted algorithms over two- and three-objective test functions have demonstrated that the proposed algorithm can achieve high performance in the approximation of the Pareto-optimal front mitigating the drawbacks of its parent algorithms.
Titolo: | A Kriging-assisted multiobjective evolutionary algorithm | |
Autori: | ||
Data di pubblicazione: | 2017 | |
Rivista: | ||
Abstract: | A surrogate-assisted (SA) evolutionary algorithm for Multiobjective Optimization Problems (MOOPs) is presented as a contribution to Soft Computing (SC) in Artificial Intelligence (AI). Such algorithm is grounded on the cooperation between a “pure” evolutionary algorithm and a Kriging based algorithm featuring the Expected Hyper-Volume Improvement (EHVI) metric. Comparison with state-of-art pure and Kriging-assisted algorithms over two- and three-objective test functions have demonstrated that the proposed algorithm can achieve high performance in the approximation of the Pareto-optimal front mitigating the drawbacks of its parent algorithms. | |
Handle: | http://hdl.handle.net/11577/3249093 | |
Appare nelle tipologie: | 01.01 - Articolo in rivista |