The unsteady flow field in a reversible pump-turbine is investigated during the continuous load rejection using a 3D computational fluid dynamic analysis. Numerical calculations are carried out using the detached eddy simulation (DES) turbulence model and a new approach involving automatic mesh motion. In this way, the instability of the flow field is analyzed by continuously changing the guide vane openings from the best efficiency point (BEP). Unsteady flow characteristics are described by post-processing signals for several monitoring points including mass flow, torque, head and pressure in the frequency and time-frequency domains. The formation of vortices of different scales is observed from the origin to further enlargement and stabilization; the effect of the rotating structures on the flow passage is analyzed, and the influence of unsteady flow development on the performance of the turbine is investigated. Finally, the evolution during the period of load rejection is characterized in order to determine the hydrodynamic conditions causing the vibrations in the machine.

Numerical study on the internal flow field of a reversible turbine during continuous guide vane closing

Dal Monte, Andrea
;
Benini, Ernesto;
2017

Abstract

The unsteady flow field in a reversible pump-turbine is investigated during the continuous load rejection using a 3D computational fluid dynamic analysis. Numerical calculations are carried out using the detached eddy simulation (DES) turbulence model and a new approach involving automatic mesh motion. In this way, the instability of the flow field is analyzed by continuously changing the guide vane openings from the best efficiency point (BEP). Unsteady flow characteristics are described by post-processing signals for several monitoring points including mass flow, torque, head and pressure in the frequency and time-frequency domains. The formation of vortices of different scales is observed from the origin to further enlargement and stabilization; the effect of the rotating structures on the flow passage is analyzed, and the influence of unsteady flow development on the performance of the turbine is investigated. Finally, the evolution during the period of load rejection is characterized in order to determine the hydrodynamic conditions causing the vibrations in the machine.
2017
File in questo prodotto:
File Dimensione Formato  
energies-10-00988.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 7.65 MB
Formato Adobe PDF
7.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3249103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 9
social impact