The realization of microfluidic platforms with liquid pumping and fluid transport independent on external power sources is the goal of a major part of research in the lab-on-chip (LOC) field. Autonomous pumping, indeed, has a strong impact on the cost, usability and portability of LOCs. In this context, power-free pumping is exploited herein by the use of chemically-responsive flexible thin membranes (TMs) as tool to push liquids inside the microchannels of a LOC platform. The assembled device consists of a closed poly(dimethylsiloxane) (PDMS) micro-chamber in which H2O2 dismutation occurs by an artificial catalase (ACat) system, evolving oxygen and generating a pressure gradient. This pressure is then used to push a liquid contained within an upper chamber and inject it into a tailored microfluidic channel. The two chambers are overlapped and separated by a PDMS TM, whose flexibility allows the conversion of the chemical energy into mechanical forces. Thanks to the finetuning of the reaction conditions by modulating the ACat catalyst and/or reagents concentrations, a precise control over the injection time and forces of the liquid can be achieved.

Self-powered catalytic microfluidic platforms for fluid delivery

Carraro, M.;Bonchio, M.;
2017

Abstract

The realization of microfluidic platforms with liquid pumping and fluid transport independent on external power sources is the goal of a major part of research in the lab-on-chip (LOC) field. Autonomous pumping, indeed, has a strong impact on the cost, usability and portability of LOCs. In this context, power-free pumping is exploited herein by the use of chemically-responsive flexible thin membranes (TMs) as tool to push liquids inside the microchannels of a LOC platform. The assembled device consists of a closed poly(dimethylsiloxane) (PDMS) micro-chamber in which H2O2 dismutation occurs by an artificial catalase (ACat) system, evolving oxygen and generating a pressure gradient. This pressure is then used to push a liquid contained within an upper chamber and inject it into a tailored microfluidic channel. The two chambers are overlapped and separated by a PDMS TM, whose flexibility allows the conversion of the chemical energy into mechanical forces. Thanks to the finetuning of the reaction conditions by modulating the ACat catalyst and/or reagents concentrations, a precise control over the injection time and forces of the liquid can be achieved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3251631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact