A robust and efficient strategy is proposed to simulate mechanical problems involving cohesive fractures. This class of problems is characterized by a global structural behavior that is strongly affected by localized nonlinearities at relatively small-sized critical regions. The proposed approach is based on the division of a simulation into a suitable number of sub-simulations where adaptive mesh refinement is performed only once based on refinement window(s) around crack front process zone(s). The initialization of Newton-Raphson nonlinear iterations at the start of each sub-simulation is accomplished by solving a linear problem based on a secant stiffness, rather than a volume mapping of nonlinear solutions between meshes. The secant stiffness is evaluated using material state information stored/read on crack surface facets which are employed to explicitly represent the geometry of the discontinuity surface independently of the volume mesh within the generalized finite element method framework. Moreover, a simplified version of the algorithm is proposed for its straightforward implementation into existing commercial software. Data transfer between sub-simulations is not required in the simplified strategy. The computational efficiency, accuracy, and robustness of the proposed strategies are demonstrated by an application to cohesive fracture simulations in 3-D.

Mesh refinement strategies without mapping of nonlinear solutions for the generalized and standard FEM analysis of 3-D cohesive fractures

Simone, A.;
2017

Abstract

A robust and efficient strategy is proposed to simulate mechanical problems involving cohesive fractures. This class of problems is characterized by a global structural behavior that is strongly affected by localized nonlinearities at relatively small-sized critical regions. The proposed approach is based on the division of a simulation into a suitable number of sub-simulations where adaptive mesh refinement is performed only once based on refinement window(s) around crack front process zone(s). The initialization of Newton-Raphson nonlinear iterations at the start of each sub-simulation is accomplished by solving a linear problem based on a secant stiffness, rather than a volume mapping of nonlinear solutions between meshes. The secant stiffness is evaluated using material state information stored/read on crack surface facets which are employed to explicitly represent the geometry of the discontinuity surface independently of the volume mesh within the generalized finite element method framework. Moreover, a simplified version of the algorithm is proposed for its straightforward implementation into existing commercial software. Data transfer between sub-simulations is not required in the simplified strategy. The computational efficiency, accuracy, and robustness of the proposed strategies are demonstrated by an application to cohesive fracture simulations in 3-D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3252957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact