The mitochondrial translocase of the outer membrane (TOM) is a protein complex that is essential for the post-translational import of nuclear-encoded mitochondrial proteins. Among its subunits, TOM70 and TOM20 are only transiently associated with the core complex, suggesting their possible additional roles within the outer mitochondrial membrane (OMM). Here, by using different mammalian cell lines, we demonstrate that TOM70, but not TOM20, clusters in distinct OMM foci, frequently overlapping with sites in which the endoplasmic reticulum (ER) contacts mitochondria. Functionally, TOM70 depletion specifically impairs inositol trisphosphates (IP3)-linked ER to mitochondria Ca2+ transfer. This phenomenon is dependent on the capacity of TOM70 to interact with IP3-receptors and favor their functional recruitment close to mitochondria. Importantly, the reduced constitutive Ca2+ transfer to mitochondria, observed in TOM70-depleted cells, dampens mitochondrial respiration, affects cell bioenerg...
TOM70 sustains cell bioenergetics by promoting IP3R3-mediated ER to mitochondria Ca2+ transfer
Riccardo Filadi;ROSSI, ALICE;Domenico Cieri;Tito Calì;Paola Pizzo
;
2018
Abstract
The mitochondrial translocase of the outer membrane (TOM) is a protein complex that is essential for the post-translational import of nuclear-encoded mitochondrial proteins. Among its subunits, TOM70 and TOM20 are only transiently associated with the core complex, suggesting their possible additional roles within the outer mitochondrial membrane (OMM). Here, by using different mammalian cell lines, we demonstrate that TOM70, but not TOM20, clusters in distinct OMM foci, frequently overlapping with sites in which the endoplasmic reticulum (ER) contacts mitochondria. Functionally, TOM70 depletion specifically impairs inositol trisphosphates (IP3)-linked ER to mitochondria Ca2+ transfer. This phenomenon is dependent on the capacity of TOM70 to interact with IP3-receptors and favor their functional recruitment close to mitochondria. Importantly, the reduced constitutive Ca2+ transfer to mitochondria, observed in TOM70-depleted cells, dampens mitochondrial respiration, affects cell bioenerg...File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0960982217316809-main.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso libero
Dimensione
5.32 MB
Formato
Adobe PDF
|
5.32 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.