We prove that every finite group G contains a three-generated subgroup H with the following property: a prime p divides the degree of an irreducible character of G if and only if it divides the degree of an irreducible character of H: There is no analogous result for the prime divisors of the sizes of the conjugacy classes.

Detecting the prime divisors of the character degrees and the class sizes by a subgroup generated with few elements

Lucchini, Andrea
2018

Abstract

We prove that every finite group G contains a three-generated subgroup H with the following property: a prime p divides the degree of an irreducible character of G if and only if it divides the degree of an irreducible character of H: There is no analogous result for the prime divisors of the sizes of the conjugacy classes.
File in questo prodotto:
File Dimensione Formato  
ischia 2016.pdf

accesso aperto

Licenza: Accesso gratuito
Dimensione 181.2 kB
Formato Adobe PDF
181.2 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3256116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact