The specific working conditions of piezoelectric harvesters for scooter tires are analyzed. Calculated and experimental results show that the excitation of the harvester can be considered a series of separated impulses. Harvester response to an ideal impulse is analyzed with a single-mode model. An optimal ratio between impulse duration and natural period of the harvester that maximizes harvester excitation is found. A numerical finite element (FE) model of a bimorph cantilever harvester is developed in COMSOL and validated by means of experimental tests. The validated FE model is used for showing that an actual harvester excited by road impulses generates a large voltage only if there is a specific relation between impulse duration and natural period of the harvester. Starting from the validated FE model, small harvesters suited to tires are developed and analyzed. Also these harvesters show the best performance for a specific range of impulse durations, which corresponds to the highest speeds of the speed range of the scooter (50-80 km/h) and to high levels of acceleration.

Improvement of harvesters for tires by means of multi-physics simulation

Doria, Alberto
;
Medè, Cristian;Desideri, Daniele;Maschio, Alvise;Moro, Federico
2017

Abstract

The specific working conditions of piezoelectric harvesters for scooter tires are analyzed. Calculated and experimental results show that the excitation of the harvester can be considered a series of separated impulses. Harvester response to an ideal impulse is analyzed with a single-mode model. An optimal ratio between impulse duration and natural period of the harvester that maximizes harvester excitation is found. A numerical finite element (FE) model of a bimorph cantilever harvester is developed in COMSOL and validated by means of experimental tests. The validated FE model is used for showing that an actual harvester excited by road impulses generates a large voltage only if there is a specific relation between impulse duration and natural period of the harvester. Starting from the validated FE model, small harvesters suited to tires are developed and analyzed. Also these harvesters show the best performance for a specific range of impulse durations, which corresponds to the highest speeds of the speed range of the scooter (50-80 km/h) and to high levels of acceleration.
2017
Proceedings of the ASME Design Engineering Technical Conference
9780791858158
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3256740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact