The dynamics of the pairwise entanglement in a qubit lattice in the presence of static imperfections exhibits different regimes. We show that there is a transition from a perturbative region, where the entanglement is stable against imperfections, to the ergodic regime, in which a pair of qubits becomes entangled with the rest of the lattice and the pairwise entanglement drops to zero. The transition is almost independent of the size of the quantum computer. We consider both the case of an initial maximally entangled and separable state. In this last case there is a broad crossover region in which the computer imperfections can be used to create a significant amount of pairwise entanglement. © 2003 The American Physical Society.
Dynamics of Entanglement in Quantum Computers with Imperfections
Montangero, Simone;
2003
Abstract
The dynamics of the pairwise entanglement in a qubit lattice in the presence of static imperfections exhibits different regimes. We show that there is a transition from a perturbative region, where the entanglement is stable against imperfections, to the ergodic regime, in which a pair of qubits becomes entangled with the rest of the lattice and the pairwise entanglement drops to zero. The transition is almost independent of the size of the quantum computer. We consider both the case of an initial maximally entangled and separable state. In this last case there is a broad crossover region in which the computer imperfections can be used to create a significant amount of pairwise entanglement. © 2003 The American Physical Society.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.