A long-lived triplet excited state of the wellknown fluorophore boron dipyrromethene (Bodipy) was observed for the first time via efficient radical-enhanced intersystem crossing (EISC). The triplet state has been obtained in two dyads in which the Bodipy unit is linked to a nitroxide radical, 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO), with two different length spacers. The photophysical properties were studied with steady-state and timeresolved transient optical spectroscopies and electron spin resonance (cw-ESR and TR-ESR). The fluorescence of Bodipy units is significantly quenched in the dyads, and the spin-polarized TEMPO signals were observed with TR-ESR, generated by a radical triplet pair mechanism. Efficient EISC (Φ_T = 80%) was observed for the dyad with a shorter linker, and the triplet state lifetime of the Bodipy chromophore is exceptionally long (62 μs). The EISC takes 250 ps. Poor ISC was observed for the dyad with a longer linker. The efficient ISC and long-lived triplet excited state in this flexible system are in stark contrast to the previously studied rigid EISC systems. The EISC effect was employed for the first time to perform triplet−triplet annihilation (TTA) upconversion (quantum yield Φ_UC = 6.7%).

Radical-Enhanced Intersystem Crossing in New Bodipy Derivatives and Application for Efficient Triplet-Triplet Annihilation Upconversion

Barbon, Antonio
Supervision
;
Toffoletti, Antonio
Methodology
;
2017

Abstract

A long-lived triplet excited state of the wellknown fluorophore boron dipyrromethene (Bodipy) was observed for the first time via efficient radical-enhanced intersystem crossing (EISC). The triplet state has been obtained in two dyads in which the Bodipy unit is linked to a nitroxide radical, 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO), with two different length spacers. The photophysical properties were studied with steady-state and timeresolved transient optical spectroscopies and electron spin resonance (cw-ESR and TR-ESR). The fluorescence of Bodipy units is significantly quenched in the dyads, and the spin-polarized TEMPO signals were observed with TR-ESR, generated by a radical triplet pair mechanism. Efficient EISC (Φ_T = 80%) was observed for the dyad with a shorter linker, and the triplet state lifetime of the Bodipy chromophore is exceptionally long (62 μs). The EISC takes 250 ps. Poor ISC was observed for the dyad with a longer linker. The efficient ISC and long-lived triplet excited state in this flexible system are in stark contrast to the previously studied rigid EISC systems. The EISC effect was employed for the first time to perform triplet−triplet annihilation (TTA) upconversion (quantum yield Φ_UC = 6.7%).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3260531
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 142
social impact