Aim: To investigate the influence of tendinous and synaptic changes induced by unilateral lower limb suspension (ULLS) on the tendon tap reflex. Methods: Eight young men underwent a 23-day period of ULLS. Muscle cross-sectional area (CSA), torque and electromyographic (EMG) activity of the plantar flexor muscles (normalized to the M wave), Achilles tendon-aponeurosis mechanical properties, soleus (SOL) H and T reflexes and associated peak twitch torques were measured at baseline, after 14 and 23 days of ULLS, and 1 week after resuming ambulatory activity. Results: Significant decreases in muscle CSA (-9%), in maximal voluntary torque (-10%) and in the associated SOL EMG activity (-16%) were found after ULLS (P < 0.05). In addition to a 36% (P < 0.01) decrease in tendon-aponeurosis stiffness, normalized H reflex increased by 35% (P < 0.05). An increase in the slope (28%, P < 0.05) and intercept (85%, P < 0.05) of the T reflex recruitment curve pointed to an increase in the gain and to a decrease in the sensitivity of this reflex, possibly resulting from the decrease in the tendon-aponeurosis stiffness at low forces. Following ULLS, changes in tendinous stiffness correlated with changes in neuromuscular efficiency (peak twitch torque to reflex ratio) at higher tendon tap forces. Conclusion: These findings point out the dual and antagonistic influences of spinal and tendinous adaptations upon the tendon tap reflex in humans under conditions of chronic unloading. These observations have potential implications for the sensitivity of the short-latency Ia stretch response involved in rapid compensatory contractions to unexpected postural perturbations. © 2008 The Authors.

Soleus T reflex modulation in response to spinal and tendinous adaptations to unilateral lower limb suspension in humans

Narici, M.
Conceptualization
2008

Abstract

Aim: To investigate the influence of tendinous and synaptic changes induced by unilateral lower limb suspension (ULLS) on the tendon tap reflex. Methods: Eight young men underwent a 23-day period of ULLS. Muscle cross-sectional area (CSA), torque and electromyographic (EMG) activity of the plantar flexor muscles (normalized to the M wave), Achilles tendon-aponeurosis mechanical properties, soleus (SOL) H and T reflexes and associated peak twitch torques were measured at baseline, after 14 and 23 days of ULLS, and 1 week after resuming ambulatory activity. Results: Significant decreases in muscle CSA (-9%), in maximal voluntary torque (-10%) and in the associated SOL EMG activity (-16%) were found after ULLS (P < 0.05). In addition to a 36% (P < 0.01) decrease in tendon-aponeurosis stiffness, normalized H reflex increased by 35% (P < 0.05). An increase in the slope (28%, P < 0.05) and intercept (85%, P < 0.05) of the T reflex recruitment curve pointed to an increase in the gain and to a decrease in the sensitivity of this reflex, possibly resulting from the decrease in the tendon-aponeurosis stiffness at low forces. Following ULLS, changes in tendinous stiffness correlated with changes in neuromuscular efficiency (peak twitch torque to reflex ratio) at higher tendon tap forces. Conclusion: These findings point out the dual and antagonistic influences of spinal and tendinous adaptations upon the tendon tap reflex in humans under conditions of chronic unloading. These observations have potential implications for the sensitivity of the short-latency Ia stretch response involved in rapid compensatory contractions to unexpected postural perturbations. © 2008 The Authors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3267152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact