atty acid ethyl esters (FAEEs) and ethyl-glucuronide (EtG) in meconium have been widely studied as biomarkers of maternal alcohol consumption during pregnancy. Many analytical approaches have been proposed for their analysis, mostly consisting of separated extraction procedures requiring the use of two meconium aliquots. This study aimed to validate a new analytical procedure for the simultaneous extraction of FAEEs and EtG from a meconium aliquot through a single solid-phase extraction (SPE) applied to 242 anonymized samples of meconium. Targeted FAEEs were: ethyl-myristate (Myr), ethyl-palmitate (Pal), ethyl-oleate (Ole) and ethyl-stearate (Ste). Two hundred milligrams of meconium was sonicated with acetonitrile, and a single SPE performed by means of aminopropyl columns. FAEEs were eluted with hexane, followed by EtG elution with water. Both the mixtures were dried, recovered, and analyzed by liquid chromatography-tandem mass spectrometry using C8 (FAEEs) and C18 (EtG) columns. Transitions were: m/z 257 → 57,88, Myr; m/z 262 → 57,88, Myr-d5; m/z 285 → 57, 72, Pal; m/z 290 → 57,258, Pal-d5; m/z 311 → 72,114, Ole; m/z 316 → 72,265, Ole-d5; m/z 257 → 57,72 Ste; m/z 318 → 57,286, Ste-d5; m/z 221 → 75,85, EtG; m/z 226 → 75,85, EtG-d5. Lower limit of quantification range was 10-15 ng/g for FAEEs and 10 ng/g for EtG. Linearity was evaluated for different concentration ranges; the mean coefficients of determination (R (2)) were above 0.9961. Precision and accuracy for FAEEs and EtG were consistently ≤20 % and ±20 %, respectively. Ion suppression was observed for all the analytes. Matrix effect did not significantly affect the analyses. Recovery efficiency was 93 % for EtG and 75-85 % for FAEEs.
A novel, simultaneous extraction of FAEE and EtG from meconium and analysis by LC-MS/MS
Favretto, Donata
;
2016
Abstract
atty acid ethyl esters (FAEEs) and ethyl-glucuronide (EtG) in meconium have been widely studied as biomarkers of maternal alcohol consumption during pregnancy. Many analytical approaches have been proposed for their analysis, mostly consisting of separated extraction procedures requiring the use of two meconium aliquots. This study aimed to validate a new analytical procedure for the simultaneous extraction of FAEEs and EtG from a meconium aliquot through a single solid-phase extraction (SPE) applied to 242 anonymized samples of meconium. Targeted FAEEs were: ethyl-myristate (Myr), ethyl-palmitate (Pal), ethyl-oleate (Ole) and ethyl-stearate (Ste). Two hundred milligrams of meconium was sonicated with acetonitrile, and a single SPE performed by means of aminopropyl columns. FAEEs were eluted with hexane, followed by EtG elution with water. Both the mixtures were dried, recovered, and analyzed by liquid chromatography-tandem mass spectrometry using C8 (FAEEs) and C18 (EtG) columns. Transitions were: m/z 257 → 57,88, Myr; m/z 262 → 57,88, Myr-d5; m/z 285 → 57, 72, Pal; m/z 290 → 57,258, Pal-d5; m/z 311 → 72,114, Ole; m/z 316 → 72,265, Ole-d5; m/z 257 → 57,72 Ste; m/z 318 → 57,286, Ste-d5; m/z 221 → 75,85, EtG; m/z 226 → 75,85, EtG-d5. Lower limit of quantification range was 10-15 ng/g for FAEEs and 10 ng/g for EtG. Linearity was evaluated for different concentration ranges; the mean coefficients of determination (R (2)) were above 0.9961. Precision and accuracy for FAEEs and EtG were consistently ≤20 % and ±20 %, respectively. Ion suppression was observed for all the analytes. Matrix effect did not significantly affect the analyses. Recovery efficiency was 93 % for EtG and 75-85 % for FAEEs.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.