Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by elevated concentrations of glucose in the blood. The chronic hyperglycemic state accounts for most of the vascular complications associated to the disease and the prevalent mechanism proposed is related to the glycating chemistry mediated by methylglyoxal (MG), which accumulates in T2DM. In recent years, a higher risk of Parkinson's disease (PD) onset in people affected by T2DM has become evident, but the molecular mechanisms underlying the interplay between T2DM and PD are still unknown. The oxidative chemistry of dopamine and its reactivity towards the protein α-Synuclein (aS) has been associated to the pathogenesis of PD. Recently, aS has also been described to interact with MG. Interestingly, MG and the dopamine oxidation products share both structural similarity and chemical reactivity. The ability of MG to spread over the site of its production and react with aS could represent the rationale to explain the higher incidence of PD in T2DM-affected people and may open opportunities for the development of novel strategies to antagonize the raise of PD.

Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View

Biosa, Alice;Bubacco, Luigi;Bisaglia, Marco
2018

Abstract

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by elevated concentrations of glucose in the blood. The chronic hyperglycemic state accounts for most of the vascular complications associated to the disease and the prevalent mechanism proposed is related to the glycating chemistry mediated by methylglyoxal (MG), which accumulates in T2DM. In recent years, a higher risk of Parkinson's disease (PD) onset in people affected by T2DM has become evident, but the molecular mechanisms underlying the interplay between T2DM and PD are still unknown. The oxidative chemistry of dopamine and its reactivity towards the protein α-Synuclein (aS) has been associated to the pathogenesis of PD. Recently, aS has also been described to interact with MG. Interestingly, MG and the dopamine oxidation products share both structural similarity and chemical reactivity. The ability of MG to spread over the site of its production and react with aS could represent the rationale to explain the higher incidence of PD in T2DM-affected people and may open opportunities for the development of novel strategies to antagonize the raise of PD.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3269713
Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 48
social impact