The rigid structure of the mammalian trachea is functional to maintain constant patency and airflow during breathing, but no gas exchange takes place through its walls. The structure of the organ in dolphins shows increased rigidity of the tracheal cartilaginous rings and the presence of vascular lacunae in the submucosa. However, no actual comparison was ever made between the size and capacity of the vascular lacunae of the dolphin trachea and the potentially homologous structures of terrestrial mammals. In the present study, the extension of the lacunae has been compared between the bottlenose dolphin and the bovine, a closely related terrestrial Cetartiodactyla. Our results indicate that the extension of the blood spaces in the submucosa of dolphins is over 12 times larger than in the corresponding structure of the bovines. Furthermore, a microscopic analysis revealed the presence of valve-like structures in the walls of the cetacean lacunae. The huge difference in size suggests that the lacunae are not merely a product of individual physiological plasticity, but may constitute a true adaptive evolutionary character, functional to life in the aquatic environment. The presence of valve-like structures may be related to the regulation of blood flow, and curtail excessive compression under baric stress at depth.

Vascularization of the trachea in the bottlenose dolphin: Comparison with bovine and evidence for evolutionary adaptations to diving

Ballarin, Cristina
;
Peruffo, Antonella;Cozzi, Bruno
2018

Abstract

The rigid structure of the mammalian trachea is functional to maintain constant patency and airflow during breathing, but no gas exchange takes place through its walls. The structure of the organ in dolphins shows increased rigidity of the tracheal cartilaginous rings and the presence of vascular lacunae in the submucosa. However, no actual comparison was ever made between the size and capacity of the vascular lacunae of the dolphin trachea and the potentially homologous structures of terrestrial mammals. In the present study, the extension of the lacunae has been compared between the bottlenose dolphin and the bovine, a closely related terrestrial Cetartiodactyla. Our results indicate that the extension of the blood spaces in the submucosa of dolphins is over 12 times larger than in the corresponding structure of the bovines. Furthermore, a microscopic analysis revealed the presence of valve-like structures in the walls of the cetacean lacunae. The huge difference in size suggests that the lacunae are not merely a product of individual physiological plasticity, but may constitute a true adaptive evolutionary character, functional to life in the aquatic environment. The presence of valve-like structures may be related to the regulation of blood flow, and curtail excessive compression under baric stress at depth.
File in questo prodotto:
File Dimensione Formato  
171645.full(1).pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 508.4 kB
Formato Adobe PDF
508.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3270178
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact