Anisotropic, biomorphic (wood-derived) potassium-based geopolymer (KGP) - biocarbon (CB) composites with net shape were manufactured by infiltrating KGP slurry into monolithic porous biocarbon (CB) structures (~77 vol% porosity) derived from pyrolyzing beech wood. About 70% of the pores in the three-dimensional (3D) CB structures were infiltrated by the KGP slurry. Compared to pure KGP, the energy absorption per unit volume in compression loading of the KGP-CB composites was increased by ten-fold. After heat treatment at 1000 °C for 1 h in N2, the compressive strength of the KGP-CB composites increased from ~7–24 MPa, accompanied by the formation of crystalline leucite (K2O·Al2O3·4SiO2) phase in the KGP. The KGP-CB composite also exhibited three orders higher electrical conductivity than pure KGP. The effect of temperature on the formation of crystalline phases in KGP and KGP-CB composites was investigated. FTIR, TGA and SEM analyses were used to investigate the changes in microstructures and phase formation during thermal treatment.

Preparation and properties of biomorphic potassium-based geopolymer (KGP)-biocarbon (CB) composite

Bernardo E.;Colombo P.;Rincon Romero;
2018

Abstract

Anisotropic, biomorphic (wood-derived) potassium-based geopolymer (KGP) - biocarbon (CB) composites with net shape were manufactured by infiltrating KGP slurry into monolithic porous biocarbon (CB) structures (~77 vol% porosity) derived from pyrolyzing beech wood. About 70% of the pores in the three-dimensional (3D) CB structures were infiltrated by the KGP slurry. Compared to pure KGP, the energy absorption per unit volume in compression loading of the KGP-CB composites was increased by ten-fold. After heat treatment at 1000 °C for 1 h in N2, the compressive strength of the KGP-CB composites increased from ~7–24 MPa, accompanied by the formation of crystalline leucite (K2O·Al2O3·4SiO2) phase in the KGP. The KGP-CB composite also exhibited three orders higher electrical conductivity than pure KGP. The effect of temperature on the formation of crystalline phases in KGP and KGP-CB composites was investigated. FTIR, TGA and SEM analyses were used to investigate the changes in microstructures and phase formation during thermal treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3271437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact