We report on the development of two new Pt-free electrocatalysts (ECs) for the oxygen reduction reaction (ORR) process based on graphene nanoplatelets (GNPs). We designed the ECs with a core-shell morphology, where a GNP core support is covered by a carbon nitride (CN) shell. The proposed ECs present ORR active sites that are not associated with nanoparticles of metal/alloy/oxide but are instead based on Fe and Sn subnanometric clusters bound in coordination nests formed by carbon and nitrogen ligands of the CN shell. The performance and reaction mechanism of the ECs in the ORR are evaluated in an alkaline medium by cyclic voltammetry with the thin-film rotating ring-disk approach and confirmed by measurements on gas-diffusion electrodes. The proposed GNP-supported ECs present an ORR overpotential of only ca. 70 mV higher with respect to a conventional Pt/C reference EC including a XC-72R carbon black support. These results make the reported ECs very promising for application in anion-exchange membrane fuel cells. Moreover, our methodology provides an example of a general synthesis protocol for the development of new Pt-free ECs for the ORR having ample room for further performance improvement beyond the state of the art. © 2018 American Chemical Society.

Toward Pt-Free Anion-Exchange Membrane Fuel Cells: Fe-Sn Carbon Nitride-Graphene Core-Shell Electrocatalysts for the Oxygen Reduction Reaction

Negro, E.
;
Bach Delpeuch, A.;Vezzù, K.;Nawn, G.;Bertasi, F.
;
Bonaccorso, F.
;
Di Noto, V.
2018

Abstract

We report on the development of two new Pt-free electrocatalysts (ECs) for the oxygen reduction reaction (ORR) process based on graphene nanoplatelets (GNPs). We designed the ECs with a core-shell morphology, where a GNP core support is covered by a carbon nitride (CN) shell. The proposed ECs present ORR active sites that are not associated with nanoparticles of metal/alloy/oxide but are instead based on Fe and Sn subnanometric clusters bound in coordination nests formed by carbon and nitrogen ligands of the CN shell. The performance and reaction mechanism of the ECs in the ORR are evaluated in an alkaline medium by cyclic voltammetry with the thin-film rotating ring-disk approach and confirmed by measurements on gas-diffusion electrodes. The proposed GNP-supported ECs present an ORR overpotential of only ca. 70 mV higher with respect to a conventional Pt/C reference EC including a XC-72R carbon black support. These results make the reported ECs very promising for application in anion-exchange membrane fuel cells. Moreover, our methodology provides an example of a general synthesis protocol for the development of new Pt-free ECs for the ORR having ample room for further performance improvement beyond the state of the art. © 2018 American Chemical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3271447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 44
social impact