In this work we studied the effect of cyclic loading on a granular packing by means of numerical simulations and experiments. A confined packing of glass beads was prepared and one of the walls was moved cyclically with a prescribed amplitude of the order of the particle diameter. Different amplitudes were tested, and their effect on the free surface evolution, the force transmitted to the moving wall and the displacement patterns in the material was characterized. Discrete numerical simulations were also carried out with the specific purpose of evaluating the effect of the particle shape on the dynamics of the system. The displacement amplitude of the moving wall was shown to increase the maximum force experienced at the end of the compressive phase of the wall movement; the angularity of the particles had a similar effect. Force-wall displacement curves displayed a peculiar hysteretic behavior. The evolution of the system towards an asymptotic state was shown to be faster for spheres than for angular particles; the latter displayed an interesting long-time evolution of the force-displacement paths which deserves deeper investigations.

Experiments and DEM Simulations of Granular Ratcheting

Gabrieli, Fabio
2017

Abstract

In this work we studied the effect of cyclic loading on a granular packing by means of numerical simulations and experiments. A confined packing of glass beads was prepared and one of the walls was moved cyclically with a prescribed amplitude of the order of the particle diameter. Different amplitudes were tested, and their effect on the free surface evolution, the force transmitted to the moving wall and the displacement patterns in the material was characterized. Discrete numerical simulations were also carried out with the specific purpose of evaluating the effect of the particle shape on the dynamics of the system. The displacement amplitude of the moving wall was shown to increase the maximum force experienced at the end of the compressive phase of the wall movement; the angularity of the particles had a similar effect. Force-wall displacement curves displayed a peculiar hysteretic behavior. The evolution of the system towards an asymptotic state was shown to be faster for spheres than for angular particles; the latter displayed an interesting long-time evolution of the force-displacement paths which deserves deeper investigations.
2017
EPJ Web of Conferences
File in questo prodotto:
File Dimensione Formato  
epjconf162411(1).pdf

accesso aperto

Descrizione: articolo
Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 804.78 kB
Formato Adobe PDF
804.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3271460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact