CO2-driven acidification and emerging contaminants, such as pharmaceuticals, pose new threats for the maintenance of natural populations of marine organisms by interfering with their normal biochemical pathways and defences. The combined effects of seawater acidification, as predicted in climate change scenarios, and an emerging contaminant (the non-steroidal anti-inflammatory drug, NSAID, diclofenac) on oxidative stress-related parameters were investigated in the Mediterranean mussel Mytilus galloprovincialis and the Manila clam Ruditapes philippinarum. A flow-through system was used to carry out a three-week exposure experiment with the bivalves. First, the animals were exposed to only three pH values for 7 days. The pH was manipulated by dissolving CO2 in the seawater to obtain two reduced pH treatments (pH -0.4 units and pH -0.7 units), which were compared with seawater at the natural pH level (8.1). Thereafter, the bivalves were concomitantly exposed to the three experimental pH values and environmentally relevant concentrations of diclofenac (0.00, 0.05 and 0.50 μg/L) for an additional 14 days. The activities of superoxide dismutase, catalase and cyclooxygenase, and lipid peroxidation and DNA strand-break formation were measured in both the gills and digestive gland after 7, 14 and 21 days of exposure to each experimental condition. The results show that the biochemical parameters measured in both the mussels and clams were more influenced by the reduced pH than by the contaminant or the pH*contaminant interaction, although the biomarker variation patterns differed depending on the species and tissues analysed. Generally, due to increases in its antioxidant defence, M. galloprovincialis was more resistant than R. philippinarum to both diclofenac exposure and reduced pH. Conversely, reduced pH induced a significant decrease in COX activity in both the gills and digestive gland of clams, possibly resulting in the increased DNA damage observed in the digestive gland tissue.

Does exposure to reduced pH and diclofenac induce oxidative stress in marine bivalves? A comparative study with the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum

Munari, Marco
Investigation
;
Matozzo, Valerio
Membro del Collaboration Group
;
Finos, Livio
Membro del Collaboration Group
;
Pastore, Paolo
Membro del Collaboration Group
;
Badocco, Denis
Membro del Collaboration Group
;
Marin, Maria Gabriella
Project Administration
2018

Abstract

CO2-driven acidification and emerging contaminants, such as pharmaceuticals, pose new threats for the maintenance of natural populations of marine organisms by interfering with their normal biochemical pathways and defences. The combined effects of seawater acidification, as predicted in climate change scenarios, and an emerging contaminant (the non-steroidal anti-inflammatory drug, NSAID, diclofenac) on oxidative stress-related parameters were investigated in the Mediterranean mussel Mytilus galloprovincialis and the Manila clam Ruditapes philippinarum. A flow-through system was used to carry out a three-week exposure experiment with the bivalves. First, the animals were exposed to only three pH values for 7 days. The pH was manipulated by dissolving CO2 in the seawater to obtain two reduced pH treatments (pH -0.4 units and pH -0.7 units), which were compared with seawater at the natural pH level (8.1). Thereafter, the bivalves were concomitantly exposed to the three experimental pH values and environmentally relevant concentrations of diclofenac (0.00, 0.05 and 0.50 μg/L) for an additional 14 days. The activities of superoxide dismutase, catalase and cyclooxygenase, and lipid peroxidation and DNA strand-break formation were measured in both the gills and digestive gland after 7, 14 and 21 days of exposure to each experimental condition. The results show that the biochemical parameters measured in both the mussels and clams were more influenced by the reduced pH than by the contaminant or the pH*contaminant interaction, although the biomarker variation patterns differed depending on the species and tissues analysed. Generally, due to increases in its antioxidant defence, M. galloprovincialis was more resistant than R. philippinarum to both diclofenac exposure and reduced pH. Conversely, reduced pH induced a significant decrease in COX activity in both the gills and digestive gland of clams, possibly resulting in the increased DNA damage observed in the digestive gland tissue.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3272119
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 60
  • OpenAlex ND
social impact