Oregano (Origanum vulgare L.) is a flowering plant that belongs to the mint family (Lamiaceae). It is used as a culinary herb and is often commercialized as a fine powder or a mixture of small fragments of dried leaves, which makes morphological recognition difficult. Like other commercial preparations of drugs and spices, the contamination of oregano mixtures with vegetable matter of lower quality, or the use of generic misleading names, are frequent and stress the need to develop a molecular traceability system to easily, quickly, and cheaply unveil these scams. The DNA-based analytical approach known as cpDNA barcoding is particularly suited for fraud identification in crop plant species (fresh products and food derivatives), and it represents a promising traceability tool as an alternative or complement to traditional detection methods. In the present study, we used a combined approach based on both qualitative and quantitative cpDNA barcoding with end-point and real-time polymerase chain reaction (PCR) analyses to assess the type and degree of contamination in commercial batches of common oregano. In a preliminary qualitative screening, we amplified, cloned, and sequenced a number of universal trnH-psbA- and trnL-barcoded regions, to identify the main contaminants in the samples under investigation. On the basis of these findings, we then developed and validated a species-specific and sequence-targeted method of testing for the quantitative assessment of contaminants, using trnL gene intron assays. Surprisingly, the results obtained in our case study indicated an almost total absence of O. vulgare in the commercial batches analyzed, but a high presence of group I contaminants (Satureja pilosa Velen.), and a moderate presence of group II contaminants (Cistus lanidifer L./Cistus albidus).

cpDNA barcoding by combined End-Point and Real-Time PCR analyses to identify and quantify the main contaminants of oregano (Origanum vulgare L.) in commercial batches

Alessandro Vannozzi
Membro del Collaboration Group
;
Margherita Lucchin
Membro del Collaboration Group
;
Gianni Barcaccia
Membro del Collaboration Group
2018

Abstract

Oregano (Origanum vulgare L.) is a flowering plant that belongs to the mint family (Lamiaceae). It is used as a culinary herb and is often commercialized as a fine powder or a mixture of small fragments of dried leaves, which makes morphological recognition difficult. Like other commercial preparations of drugs and spices, the contamination of oregano mixtures with vegetable matter of lower quality, or the use of generic misleading names, are frequent and stress the need to develop a molecular traceability system to easily, quickly, and cheaply unveil these scams. The DNA-based analytical approach known as cpDNA barcoding is particularly suited for fraud identification in crop plant species (fresh products and food derivatives), and it represents a promising traceability tool as an alternative or complement to traditional detection methods. In the present study, we used a combined approach based on both qualitative and quantitative cpDNA barcoding with end-point and real-time polymerase chain reaction (PCR) analyses to assess the type and degree of contamination in commercial batches of common oregano. In a preliminary qualitative screening, we amplified, cloned, and sequenced a number of universal trnH-psbA- and trnL-barcoded regions, to identify the main contaminants in the samples under investigation. On the basis of these findings, we then developed and validated a species-specific and sequence-targeted method of testing for the quantitative assessment of contaminants, using trnL gene intron assays. Surprisingly, the results obtained in our case study indicated an almost total absence of O. vulgare in the commercial batches analyzed, but a high presence of group I contaminants (Satureja pilosa Velen.), and a moderate presence of group II contaminants (Cistus lanidifer L./Cistus albidus).
2018
File in questo prodotto:
File Dimensione Formato  
Vannozzi et al. (2018) Diversity 10 98 1-13 DOI 10.3390|d10030098.pdf

accesso aperto

Descrizione: Vannozzi et al. (2018) Diversity 10 98 1-13
Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 982.67 kB
Formato Adobe PDF
982.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3278606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact