This paper presents a nanoscale-inspired continuum model to capture the coupling of adhesion and friction in contact-mechanics problems. The method relies on Green's function molecular dynamics to calculate the elastic body fields and on a phenomenological mixed-mode coupled cohesive-zone model to describe the interplay between normal and tangential tractions, i.e. adhesion and friction. While the presented formulation is applicable to linearly elastic solids with generic surface roughness, the focus of our analysis is on the indentation of an array of circular rigid punches into a flat, deformable solid. Our results show that the coupling between adhesion and friction leads to an increase in the contact size and a decrease in the pull-off load.

Modelling coupled normal and tangential tractions in adhesive contacts

Nicola, L.
2018

Abstract

This paper presents a nanoscale-inspired continuum model to capture the coupling of adhesion and friction in contact-mechanics problems. The method relies on Green's function molecular dynamics to calculate the elastic body fields and on a phenomenological mixed-mode coupled cohesive-zone model to describe the interplay between normal and tangential tractions, i.e. adhesion and friction. While the presented formulation is applicable to linearly elastic solids with generic surface roughness, the focus of our analysis is on the indentation of an array of circular rigid punches into a flat, deformable solid. Our results show that the coupling between adhesion and friction leads to an increase in the contact size and a decrease in the pull-off load.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3279487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact