The mechanisms by which specific anaerobic microorganisms remain firmly attached to lignocellulosic material, allowing them to efficiently decompose organic matter, have yet to be elucidated. To circumvent this issue, microbiomes collected from anaerobic digesters treating pig manure and meadow grass were fractionated to separate the planktonic microbes from those adhered to lignocellulosic substrate. Assembly of shotgun reads, followed by a binning process, recovered 151 population genomes, 80 out of which were completely new and were not previously deposited in any database. Genome coverage allowed the identification of microbial spatial distribution in the engineered ecosystem. Moreover, a composite bioinformatic analysis using multiple databases for functional annotation revealed that uncultured members of the Bacteroidetes and Firmicutes follow diverse metabolic strategies for polysaccharide degradation. The structure of cellulosome in Firmicutes species can differ depending on the number and functional roles of carbohydrate-binding modules. In contrast, members of the Bacteroidetes are able to adhere to and degrade lignocellulose due to the presence of multiple carbohydrate-binding family 6 modules in beta-xylosidase and endoglucanase proteins or S-layer homology modules in unknown proteins. This study combines the concept of variability in spatial distribution with genome-centric metagenomics, allowing a functional and taxonomical exploration of the biogas microbiome.

Spatial distribution and diverse metabolic functions of lignocellulose-degrading uncultured bacteria as revealed by genomecentric metagenomics

Campanaro, Stefano;Treu, Laura
;
Armani, Andrea;
2018

Abstract

The mechanisms by which specific anaerobic microorganisms remain firmly attached to lignocellulosic material, allowing them to efficiently decompose organic matter, have yet to be elucidated. To circumvent this issue, microbiomes collected from anaerobic digesters treating pig manure and meadow grass were fractionated to separate the planktonic microbes from those adhered to lignocellulosic substrate. Assembly of shotgun reads, followed by a binning process, recovered 151 population genomes, 80 out of which were completely new and were not previously deposited in any database. Genome coverage allowed the identification of microbial spatial distribution in the engineered ecosystem. Moreover, a composite bioinformatic analysis using multiple databases for functional annotation revealed that uncultured members of the Bacteroidetes and Firmicutes follow diverse metabolic strategies for polysaccharide degradation. The structure of cellulosome in Firmicutes species can differ depending on the number and functional roles of carbohydrate-binding modules. In contrast, members of the Bacteroidetes are able to adhere to and degrade lignocellulose due to the presence of multiple carbohydrate-binding family 6 modules in beta-xylosidase and endoglucanase proteins or S-layer homology modules in unknown proteins. This study combines the concept of variability in spatial distribution with genome-centric metagenomics, allowing a functional and taxonomical exploration of the biogas microbiome.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3280088
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact