Background: Cluster analysis is a crucial tool in several biological and medical studies dealing with microarray data. Such studies pose challenging statistical problems due to dimensionality issues, since the number of variables can be much higher than the number of observations.Results: Here, we present a general framework to deal with the clustering of microarray data, based on a three-step procedure: (i) gene filtering; (ii) dimensionality reduction; (iii) clustering of observations in the reduced space. Via a nonparametric model-based clustering approach we obtain promising results both in simulated and real data.Conclusions: The proposed algorithm is a simple and effective tool for the clustering of microarray data, in an unsupervised setting. © 2011 De Bin and Risso; licensee BioMed Central Ltd.
A novel approach to the clustering of microarray data via nonparametric density estimation
De Bin, Riccardo;Risso, Davide
2011
Abstract
Background: Cluster analysis is a crucial tool in several biological and medical studies dealing with microarray data. Such studies pose challenging statistical problems due to dimensionality issues, since the number of variables can be much higher than the number of observations.Results: Here, we present a general framework to deal with the clustering of microarray data, based on a three-step procedure: (i) gene filtering; (ii) dimensionality reduction; (iii) clustering of observations in the reduced space. Via a nonparametric model-based clustering approach we obtain promising results both in simulated and real data.Conclusions: The proposed algorithm is a simple and effective tool for the clustering of microarray data, in an unsupervised setting. © 2011 De Bin and Risso; licensee BioMed Central Ltd.| File | Dimensione | Formato | |
|---|---|---|---|
|
unpaywall-bitstream--1055373312.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
409.67 kB
Formato
Adobe PDF
|
409.67 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




