The numerical analysis of large numbers of arbitrarily distributed discrete thin fibres embedded in a continuum is a computationally demanding process. In this contribution, we propose an approach based on the partition of unity property of finite element shape functions that can handle discrete thin fibres in a continuum matrix without meshing them. This is made possible by a special enrichment function that represents the action of each individual fibre on the matrix. Our approach allows to model fibre‐reinforced materials considering matrix, fibres and interfaces between matrix and fibres individually, each with its own elastic constitutive law.
A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres
Simone A.;
2010
Abstract
The numerical analysis of large numbers of arbitrarily distributed discrete thin fibres embedded in a continuum is a computationally demanding process. In this contribution, we propose an approach based on the partition of unity property of finite element shape functions that can handle discrete thin fibres in a continuum matrix without meshing them. This is made possible by a special enrichment function that represents the action of each individual fibre on the matrix. Our approach allows to model fibre‐reinforced materials considering matrix, fibres and interfaces between matrix and fibres individually, each with its own elastic constitutive law.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.